
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Computation Reuse via Fusion in Amazon Athena

Nicolas Bruno

AWS Athena

Amazon

Redmond, US

nicbrun@amazon.com

Johnny Debrodt

AWS Athena

Amazon

New York, US

jdebrodt@amazon.com

Chujun Song

Computer Science Dept.

University of Maryland

College Park, US

cjsong@cs.umd.edu

Wei Zheng

AWS Athena

Amazon

Palo Alto, US

wzheamzn@amazon.com

Abstract— Amazon Athena is a serverless, interactive query

service that allows efficiently analyzing large volumes of data

stored in Amazon S3 using ANSI SQL. Some design choices in the

engine, especially those concerning streaming of intermediate

results, can result in suboptimal executions for query patterns that

have common expressions. In this paper we build upon recent

work and introduce new optimizations in Athena that handle some

common expression scenarios without materializing intermediate

results or duplicating work. We describe commonalities and

differences with previous work, and provide experimental results

that validate our approach on TPC-DS data.

Keywords—query optimization, query fusion, Amazon Athena

I. INTRODUCTION

Amazon Athena [4] is an interactive query service that
makes it easy to efficiently analyze, using ANSI SQL, large
volumes of data stored using open formats. Customers do not
need to perform Extract-Transform-Load (ETL) operations to
ingest data in Athena. Instead, they define schemas pointing to
data residing in Amazon S3 [5] and immediately start issuing
queries and getting insights 1 . To that end, Athena natively
supports a variety of data formats, including CSV (comma-
separated values), JSON [6], ORC [7], Avro [8], and
Parquet [9], and several compression alternatives, such as
Snappy [10], Zlib [11] and Gzip [12].

Athena is serverless, so there is no infrastructure to setup,
provision or manage. The control plane allocates compute
resources on-demand across multiple availability zones and
transparently scales up without the need of complex tuning
knobs. Billing follows a pay-as-you-go model, in which
customers are charged a fixed amount per TB scanned, without
additional storage charges beyond those incurred by S3 and
dependent services like AWS Glue [14] and AWS Lambda [15].

The query engine in Athena has its roots in the Presto
system [13]. Although the engine diverged over time from the
initial Presto fork, it shares various design philosophies and
implementation choices that result in a flexible and performant
solution. In particular, the query engine is architected to leverage
streaming during compilation, scheduling, and execution. For
instance, split enumeration (i.e., the task of determining which

1 Note that while S3 is the most common data source in Athena, the system

supports several other sources via federated connectors.

files to retrieve to evaluate queries) is not synchronous, and the
engine starts evaluating portions of the query before
enumeration is finished. Also, intermediate shuffle operations,
which are required for correctness in a distributed setting, are
not materialized to stable storage. Instead, intermediate results
are streamed from producer to consumer tasks.

These architectural decisions result in an engine that
typically exhibits interactive query performance even for
complex queries and large amounts of input data. At the same
time, for certain query patterns, they can cause suboptimal
executions. A specific scenario, which we focus on in this paper,
is that of common subexpressions. Consider, for instance, a
variant of query 65 in the TPC-DS benchmark [16]:

SELECT s_store_name, i_item_desc, revenue

FROM store, item,

 (SELECT ss_store_sk, AVG(revenue) AS ave

 FROM (SELECT ss_store_sk, ss_item_sk,

 sum(ss_sales_price) AS revenue

 FROM store_sales, date_dim

 WHERE ss_sold_date_sk = d_date_sk

 AND d_month_seq BETWEEN 1212 AND 1247

 GROUP BY ss_store_sk, ss_item_sk) sa

 GROUP BY ss_store_sk) sb,

 (SELECT ss_store_sk, ss_item_sk,

 sum(ss_sales_price) AS revenue

 FROM store_sales, date_dim

 WHERE ss_sold_date_sk = d_date_sk

 AND d_month_seq BETWEEN 1212 AND 1247

 GROUP BY ss_store_sk, ss_item_sk) sc

WHERE sb.ss_store_sk = sc.ss_store_sk

 AND sc.revenue <= 0.1 * sb.ave

 AND s_store_sk = sc.ss_store_sk

 AND i_item_sk = sc.ss_item_sk

ORDER BY s_store_name, i_item_desc LIMIT 100

This query uses the same common block twice in the FROM

clause (shown in bold above). Due to the streaming nature of the
query engine, plans consist of trees of operators without
materialization points. Athena thus processes the query by
evaluating the common portion twice. This is suboptimal,
especially if the duplicated computation is expensive. Due to the
pay-as-you-go billing model, this approach also increases the
cost to customers when executing these types of queries.

mailto:nicbrun@amazon.com
mailto:jdebrodt@amazon.com
mailto:cjsong@cs.umd.edu
mailto:wzheamzn@amazon.com

A common approach to deal with common subexpressions
is via spooling [21]. The idea is to evaluate a common
computation once and reuse the intermediate results by multiple
consumers (inducing DAG-like execution plans). Spooling is a
general approach to deal with common subexpressions, and this
solution is part of Athena’s future roadmap. However, in certain
scenarios we can do better than spooling. Some query shapes
can be handled in a better way by completely removing multiple
instances of the common subquery without the need to store
intermediate results. In this way we preserve the streaming
characteristics of the engine and return results efficiently while
avoiding duplicate computations. As an example, the query
above can be rewritten as follows:

SELECT s_store_name, i_item_desc, revenue

FROM store, item,

 (SELECT ss_store_sk, ss_item_sk, revenue,

 AVG(revenue) OVER (PARTITION BY

 ss_store_sk) avgR

 FROM (SELECT ss_store_sk, ss_item_sk,

 sum(ss_sales_price) AS revenue

 FROM store_sales, date_dim

 WHERE ss_sold_date_sk = d_date_sk

 AND d_month_seq BETWEEN 1212 AND 1247

 GROUP BY ss_store_sk, ss_item_sk) X) Y

WHERE revenue <= 0.1 * avgR

AND ss_store_sk = s_store_sk

AND ss_item_sk = i_item_sk

ORDER BY s_store_name, i_item_desc LIMIT 100

For this rewrite, we leverage the specific pattern of the query,
which aggregates the common expression on ss_store_sk and

then joins the aggregated result back with the common
expression on column ss_store_sk. We can achieve the same
result by using a windowed aggregation partitioned on
ss_store_sk, and keeping rows for which ss_store_sk is not

NULL (implicitly done by the subsequent join with table store).

In this way, we combine a common Join/Aggregation pattern
over a common expression into an alternative formulation that
evaluates and reads the input only once. This rewrite reduces the
query latency by 48% and the amount of data scanned by almost
50%, which translates in lower bills to customers.

The techniques described in this paper can also handle
scenarios in which the common expressions are not exactly the
same, but can still be rewritten into a fragment that generates a
superset of the required rows and columns, and handle the
differences via compensating actions. As a simple example:

WITH cte as (...complex_subquery...)

SELECT customer_id FROM cte WHERE fname = 'John'

UNION ALL

SELECT customer_id FROM cte WHERE lname = 'Smith'

can be rewritten into an equivalent query as:

WITH cte as (...complex_subquery...)

SELECT customer_id

FROM cte, (VALUES (1), (2)) T(tag)

WHERE (fname = 'John' AND tag=1)

 OR (lname = 'Smith' AND tag=2)

Note that, in general, not all queries with common
expressions can be rewritten by eliminating both duplication of
work and materialization (the general case should be handled by

spooling intermediate results). However, there are several
scenarios for which the rewrites shown in this work are
applicable. In those cases, the resulting rewrites are more
efficient than alternatives that materialize intermediate results,
which not only write those intermediates, but need to read them
multiple times. For instance, the TPC-DS benchmark improves
over 14% when our techniques are enabled, and specifically
improves almost 60% for the subset of applicable queries.

It is also worth noting that the same techniques are
completely applicable to any database system based on query
rewriting, since they do not require new operators or execution
models. In fact, other analytic engines within AWS, like
Amazon Redshift [22] and Amazon EMR [23], are already
incorporating these improvements.

The rest of the paper is structured as follows. In Section II
we review previous work on query fusion and adapt it to power
our optimizations. In Section III we describe how we implement
query fusion in Athena, and in Section IV we introduce
optimization rules that rely on query fusion. In Section V we
present an experimental evaluation of our techniques on the
TPC-DS benchmark, and we conclude in Section VI.

II. RELATED WORK

Big-data query optimizers [13, 17-19] typically borrow and

build upon rewrite rules from the database literature. Our

approach follows this pattern by leveraging and extending

recent work in the literature, and specifically the query fusion

work of Blitz [1] and Resin [2].

The Blitz system extends a query optimizer with specific

rules that find and substitute subquery patterns with streaming

super-operators. Two of these rules are self-joins and self-

unions that follow a GroupBy on the same input table, and the

third pattern is a specialized implementation of a min

aggregation followed by a join. Blitz transformations are useful

whenever applicable, but have some drawbacks. The patterns

cover a rather small fraction of queries, and the resulting super-

operators do not compose well with each other and therefore

cannot be chained together. Our approach is able to cover the

optimizations in Blitz without the need of super-operators, as

discussed in Section III.

Resin extends the work in Blitz by formalizing the concept

of query fusion, which identifies sub-queries computing on

overlapping data, and fuses them into a single computation with

compensating actions to retrieve the original results. This

analysis does not require the subqueries to be syntactically the

same nor produce the same output. The fused query can be used

once in general via spooling, and in some cases, it can eliminate

spooling altogether. For that purpose, Resin introduces new

operators (e.g., ResinMap, ResinReduce) to implement query

fusion. These operators are simpler to manipulate than the Blitz

super-operators, and therefore can be applied to broader

scenarios. Our work is based on the Resin work, with the

following differences and extensions:

- Our approach handles scenarios that can fully eliminate

common subqueries without materializing intermediate

results. For that reason, we streamline the discovery of

matches by embedding the process in optimization

rules, without using signatures to identify ‘far-away’

matches that could not be leveraged.

- We introduce optimization rules that leverage query

fusion to novel query patterns (e.g., fusing subqueries

that differ in a source table, or better handling of

diamond-like shapes on n-ary operators).

- We implement query fusion without introducing new

operators like ResinMap/ResinReduce. Instead, we

express the resulting computation using standard

relational operators. As a consequence, our new rules

can be composed in a better way with existing ones,

since there are no new operators to handle.

Additionally, it avoids the requirement of additional

code generation for new operators.

- We extend query fusion to cover operators that are

unique to Athena (e.g., MarkDistinct) and in that

way, better handle constructs like distinct aggregates.

III. QUERY FUSION PRIMITIVES

We next describe our implementation of query fusion,

which serves as building block in the optimization rules we

describe in Section IV. Query fusion is a recursive procedure

that operates over logical algebraic trees. Specifically, we

define a function Fuse that takes two input plans and returns

either ⊥ (when fusion is not possible), or a 4-tuple fused result

otherwise. If Fuse(P1, P2) = (P, M, L, R), then:

- P is the fused resulting plan. The schema of P includes

all output columns in P1 and, optionally, additional

output columns from P2.

- M is a mapping from the output columns of P2 to output

columns of P.

- L and R are two filter conditions defined over the output

columns of P to restore P1 and P2, respectively.

Semantically, we can reconstruct P1 and P2 as follows:

P1 = ProjectoutCols(P1)(FilterL(P))

P2 = ProjectM(outCols(P2))(FilterR(P))

where outCols(P) denotes the output columns of plan P.

In the rest of this section, we define Fuse(P1,P2) based

on the shape of the input plans P1 and P2. For now, we require

that both P1 and P2 have the same root operator, and explain

how we relax this assumption in Section III.G. To illustrate

each definition, we give samples based on the TPC-DS schema.

A. Table Scans

Fusing two table scans, Fuse(Scan(T1), Scan(T2)),

succeeds when T1 and T2 denote the same table (otherwise, the

operation returns ⊥). The fused result is defined as:

(Scan(T1), columnMap(T2, T1), TRUE, TRUE)

2 Strictly speaking, M is a map from columns to columns. We abuse the

notation for simplicity and reuse M to map expressions in the natural way.

where columnMap(T2, T1) maps positionally the output

columns of T2 to those of T1 (note that the engine follows the

common practice of assigning new column identities to each

instance of the same table). As an example, fusing two query

fragments that scan the same table:

SELECT i_item_sk AS sk, i_brand AS brand

FROM item

SELECT i_brand AS brand2, i_size AS size

FROM item

results in a fused result (P, M, TRUE, TRUE) where:

P: SELECT i_item_sk AS sk,

 i_brand AS brand,

 i_size AS size

 FROM item

M: brand2 → brand

B. Filters

Consider F1=FilterC1(P1) and F2=FilterC2(P2). We

first recursively fuse the subplans. If this is not successful, we

propagate ⊥. Else, if Fuse(P1, P2)=(P, M, L, R) we

define Fuse(F1, F2) as2:

(FilterC1 OR M(C2)(P), M, L AND C1, R AND M(C2))

Note that if C1 is equivalent to M(C2), we simplify the fused

result as (FilterC1(P), M, L, R).

As an example, fusing two query fragments that scan the

same table with different filters:

SELECT i_item_desc

FROM item

WHERE i_category = 'Music' AND i_brand_id > 1000

SELECT i_item_desc

FROM item

WHERE i_category = 'Music' AND i_brand_id < 50

results in (P, ∅, L, R), where:

P: SELECT i_item_desc FROM item

 WHERE i_category = 'Music' AND

 (i_brand_id < 50 OR i_brand_id > 1000)

L: i_brand_id > 1000 AND i_category = 'Music'

R: i_brand_id < 50 AND i_category = 'Music'

C. Projections

Consider R1=ProjectA1(P1) and R2=ProjectA2(P2),

where A1 and A2 are sequences of assignments of expressions

to new variables (e.g., [x:=a+1, y:=b]) . We first recursively

compute Fuse(P1, P2) and propagate any ⊥ result.

Otherwise, if fusing P1 and P2 returns (P, M, L, R), we

define the result of Fuse(R1, R2) as:

(ProjectA(P), M’, L, R)

where A contains all assignments in A1 and M’ contains all

mappings in M. Additionally, for each assignment a:=expr in

A2, we check whether A1 contains an assignment of the form

b:=M(expr). If that is the case, we add a→b to the resulting

mapping M’. Otherwise, we add b:=M(expr) to the resulting

assignments A. For instance, if T(a) is a table with a single

column a, and T’(a’) denotes another instance of T with a new

column a’, the result of fusing Projectx:=a+1(Scan(T)) and

Projecty:=a’+1, z:=3(Scan(T’)) is:

(Projectx:=a+1, z:=3(T), {a’→a, y→x}, TRUE, TRUE)

As an example, fusing two query fragments that scan the

same table with different projections:

SELECT i_brand_id + 1 AS brand_plus_one

FROM item

SELECT new_brand_id + 1 AS x, 'new brand' AS y

FROM (SELECT i_brand_id AS new_brand_id

 FROM item) t

results in (P, M, TRUE, TRUE) where:

P: SELECT i_brand_id + 1 AS brand_plus_one,

 'new brand plus one' AS y

 FROM item

M: x → brand_plus_one

D. Joins

Consider now J1 = JL1⨝C1JR1 and J2 = JL2⨝C2JR2.

For simplicity we assume inner joins, but the results are similar

for outer- and semi-join variants. To fuse J1 and J2 we first

attempt to pairwise fuse the left and right sides of J1 and J2,

and return ⊥ if any recursive call fails to deliver a fused result.

Otherwise, assume Fuse(JL1, JL2) = (JL, ML, LL, RL)

and Fuse(JR1, JR2) = (JR, MR, LR, RR). We first obtain

the resulting column mapping as M = MLMR since ML and MR

are non-overlapping. Using this mapping, we check whether the

join conditions in J1 and J2 are equivalent, that is, whether C1

 M(C2). If this is not the case, we return ⊥3. Otherwise, we

define Fuse(J1, J2) as:

(JL⨝C1JR, M, LL AND M(LR), RL AND M(RR))

For instance, fusing two fragments that join the same tables:

SELECT ss_store_sk AS a_sk, ss_quantity

FROM store_sales JOIN item

ON ss_item_sk = i_item_sk

WHERE ss_addr_sk > 20 AND i_size IN ('m', 'l')

3 Note that we can still address scenarios in which the conditions do not

fully match by calculating the common portion and treat residuals as filters.

SELECT ss_store_sk AS b_sk

FROM store_sales, item

ON ss_item_sk = i_item_sk

WHERE i_size = 'l'

results in (P, M, L, R) where
P: SELECT ss_store_sk AS a_sk, ss_quantity

 FROM store_sales JOIN item

 ON ss_item_sk = i_item_sk

 WHERE i_size = 'l'

 OR (ss_addr_sk > 20 AND i_size IN ('m', 'l'))

M: b_sk → a_sk

L: ss_addr_sk > 20 AND i_size IN ('m', 'l')

R: i_size = 'l'

Note that this approach would not fuse trees with different

join orders. Although in principle this sounds rather limiting, in

practice (i) many queries use common table expressions (CTEs)

to reuse computation and thus start with the same join tree, and

(ii) an earlier compilation phase of join canonicalization

typically produces compatible join orders for subqueries that

can be fused. A more general handling of joins, however, is part

of future work and requires flattening the join tree into an n-ary

join and performing a more sophisticated matching of its inputs

via techniques inspired from materialized view matching.

E. Aggregations

Aggregate functions in Athena have additional syntactic

sugar that simplifies the treatment of fusion. Specifically, each

aggregate is a pair (a, m) where a is a traditional aggregate

function (e.g., COUNT(*)) and m is a boolean expression, called

the mask of the aggregate. The semantics of this construct is

that during aggregation we only consider input tuples that

satisfy the mask for the purpose of the aggregate, and discard

the rest. Note that each aggregate function in a GroupBy

operator can have different mask expressions, and thus

GroupBy operators can compute aggregations over different

subsets of data. Consider G1=GroupByK1,A1(P1), where K1 is

the set of grouping columns and A1 is the list of aggregate

functions [ci:=(ai,mi)], and analogously consider

G2=GroupByK2,A2(P2).

To fuse G1 and G2 we proceed as follows. We first attempt

to recursively fuse the inputs and propagate any failure ⊥.

Otherwise, the fusion of P1 and P2 returns (P, M, L, R). We

then check whether the grouping columns are equivalent (i.e.,

whether K1 = M(K2)) and return ⊥ if they are not. Otherwise,

we initialize the new mapping Mnew = M, and assemble the new

aggregations Anew. To that end, for each ci:=(ai,mi) in A1, we

add to Anew an aggregation with a tighter mask ci:=(ai, mi
AND L). Then, for each cj:=(aj,mj) in A2, we check whether

(M(aj), M(mj AND R)) already exists in Anew. If it does (and

is assigned to some variable cnew) we add cj→cnew to the new

mapping Mnew. If it does not, we add a new aggregate cj

:=(M(aj), M(mj AND R)) to Anew (note that the new column

cj does not exist in Anew or P and therefore this is well-formed).

There is a subtle detail before assembling the final result.

When we deal with non-scalar GroupBy operators (i.e., non-

empty grouping columns), aggregations with masks return an

aggregated row even if all input rows have been discarded by

the mask. This is not the desired result during fusion, since

groups for which all input rows were discarded should not

produce any row. Thus, for non-scalar GroupBy operators for

which L (respectively, R) are not TRUE, we add to Anew

compensating aggregates countL:=(COUNT(*), L)

(respectively, countR:=(COUNT(*), R)), and define

compensating filters compL  countL>0 (respectively,

compR  countR>0) . For a scalar aggregate or in case L (or

R) are TRUE, we do not modify Anew and define compL (or

compR) as TRUE. With all this preparation, we define

Fuse(G1, G2) as:

(GroupByK1, Anew(P), Mnew, compL, compR)

As an example, given G1 and G2 defined as:

G1 = GroupBy{a}, x:=(SUM(b), TRUE)(Filterc=1(T))

G2 = GroupBy{a}, y:=(AVG(b), d=1)(T))

The result of fusing G1 and G2 is (P, M, z>0, TRUE),

where M is the trivial mapping from columns in T, and P is

GB{a},[x:=(SUM(b),c=1),y:=(AVG(b),d=1),z:=(COUNT(*),c=1)](T)

As another example, fusing two query fragments that

aggregate on the same column of the same table:

SELECT i_item_sk,

 MIN(i_brand_id) AS mi

FROM item

WHERE i_color = 'red'

GROUP BY i_item_sk

SELECT i_item_sk,

 AVG(i_category_id)

 FILTER (WHERE i_size = 'm') AS avgc

FROM item

GROUP BY i_item_sk

results in (P, ∅, TRUE, TRUE) where:

P: SELECT i_item_sk,

 MIN(i_brand_id)

 FILTER (WHERE i_color = 'red') AS mi,

 AVG(i_category_id)

 FILTER (WHERE i_size = 'm') AS avgc

FROM item

GROUP BY i_item_sk

An important consequence of implementing query fusion

without creating new custom operators, is that orthogonal rules

are applicable to fused results (e.g., expression simplification

over masks, or rules over GroupBy operators can automatically

operate over intermediate results with no changes).

F. Distinct Aggregations

In addition to traditional mechanisms to implement distinct

aggregates (e.g., via self-joins), Athena offers an alternative

that relies on a new relational operator called MarkDistinct.

This operator is defined by a relational input P and a set D of

columns in P and returns a new Boolean column d (we denote

this as MarkDistinctdD(P)). This operator passes through

the input P and assigns new values to column d. The value of d

is TRUE each time a combination of values of D is seen for the

first time in P, and FALSE otherwise. In conjunction with

masks, we can implement distinct aggregates using the

MarkDistinct operator. For instance, the expression

GroupBy{a},x:=count(distinct b), y:=count(distinct c)(T) can be

implemented as:

GroupBy{a},[x:=(count(b),db),y:=(count(c),dc)]

 MarkDistinctdb{b}

 MarkDistinctdc{c}

 T

Consider now fusing M1=MarkDistinctd1D1(P1) and

M2=MarkDistinctd2D2(P2). If Fuse(P1, P2) returns ⊥,

we propagate this value. Otherwise, it returns (P, M, L, R),

and we define Fuse(M1, M2) as (Q, M, L, R), where

Q ≡ MarkDistinctd1D1{m1}

 MarkDistinctd2D2{m2}

 Projectm1:=L, m2:=R

 P

That is, we define new boolean columns m1 and m2 for the

compensating filters L and R, and add those new columns to the

corresponding MarkDistinct column sets to operate on. This

way, MarkDistinct operators would distinguish the first time

they process a new instance value of the original column set and

whether this value satisfied or not the compensating filters.

There are a few optimizations to this basic scheme, like

extending the MarkDistinct operator itself to consider masks

natively, skipping the generation of extra columns from the

Project operator if the compensating filters are TRUE, or

processing a chain of MarkDistinct operators on both sides

holistically rather than one pair at a time. We omit those

extensions to simplify the presentation.

G. Additional details

So far, we showed how we define the Fuse operation

whenever both inputs have the same root operator, and for a

selected set of relational operators. We next describe some

additional details that extend the mechanism described so far to

handle more scenarios.

First, there are some operators that accept a default

implementation of the Fuse operation. Consider for instance

the EnforceSingleRow operator, which takes an input and

enforces that it returns a single row (or otherwise fails the

query). In this case, the fusion of two queries that have this

operator as the root can be done in a generic way, by (i)

recursively applying the Fuse operation to the input of the root

operator, (ii) checking whether the operators are equivalent

modulo the returned mapping, and (iii) replacing the child of

the first query with the result of the recursive Fuse call.

Second, we outline a best-effort approach to generalize

fusion whenever the root operators of the input queries are not

the same. Suppose that the left operator is MarkDistinct and

the right operator is not. Because MarkDistinct just adds a

new column to the result, we can (i) skip the MarkDistinct

operator on the left side, (ii) fuse its child with the right side,

and (iii) if successful, add back the MarkDistinct operator to

the fused result. Other extensions include manufacturing a

trivial projection if one of the queries has a Project root

operator and the other does not, or add a trivial filter (TRUE) if

the root of one subquery has a Filter operator and the other

does not. These extensions are subtle since they can produce

correct but inefficient fused queries. For instance, suppose that

P1 = Filter(T) and P2 = MarkDistinct(Filter(T)).

In this case, we could either skip the MarkDistinct operator

in P2 and match the child with P1, or manufacture a trivial filter

on top of P2 and fuse it with P1. Clearly, the first alternative is

better and would produce a good fused result, while the second

alternative would fail to push the disjunction of both filters

down to the scan due to the injected trivial filter. As this

example demonstrates, a careful mechanism to decide

compensating actions in case of non-matching root operators is

crucial to have a flexible and performant solution. In general,

however, more fundamental extensions to generalize fusion for

queries that are expressed in structurally different ways is an

important research topic and part of future work.

IV. OPTIMIZATION RULES

We now describe specific optimization rules we

incorporated into the Athena engine, which use query fusion as

a building block. We first describe individual rules in a

simplified way, and later complement the presentation with

some additional details that make them more widely applicable.

A. GroupByJoinToWindow

This rule transforms a common pattern in which a common

expression is aggregated and joined back to itself to obtain

additional information on the aggregated rows. Intuitively it is

a calculation that extends an input relation with aggregates

computed on a subset of columns. Window functions operate in

this manner and can be used to rewrite the original pattern.

Consider an input pattern like P1 ⨝C GroupByK,A(P2) and

suppose that the following conditions hold:

- Fuse(P1, P2) = (P, M, TRUE, TRUE)4.

- The join condition C can be written as C1 AND C2,

where C1 = cl1=cr1 AND ... AND cln=crn, and

moreover, K = {cr1,...,crn}. In other words, the

join condition contains equalities with columns that

4 To simplify the presentation, we consider the case in which the filter

conditions of the fused result are TRUE. The extension to arbitrary conditions

match the grouping columns on the right-hand side and

remaining conditions C2 that would result in residuals.

- For each cli=cri in C1, we have that cli = M(cri),

so that the join can be seen as an equijoin (with extra

predicates) modulo the mapping function M.

In this case, we replace the original pattern with:

Filter M(C2)

 Window A OVER(PARTITION BY cl1...cln)

 Filter ANDi=1..n (cli IS NOT NULL)

 P

The input pattern can either be directly specified in the input

query or via a decorrelation opportunity [20] for queries like:

 SELECT * FROM T T1

 WHERE T1.a = (SELECT AVG(c)

 FROM T T2

 WHERE T2.b = T1.b)

B. JoinOnKeys

This rule addresses a common pattern in which similar

subqueries, which return different views of the same data, are

self-joined together. Because of the existence of keys, each row

from the left matches with at most one row from the right.

Therefore, we are extending each row that matches with

columns from both sides. A NOT NULL condition is needed to

remove rows that do not have a match on the other side, and

residual predicates are added to ensure the original result.

Consider a pattern like P1 ⨝C P2 and suppose the

following conditions hold:

- Fuse(P1, P2) = (P, M, L, R).

- A key of P1 is K1 (i.e., every row from P1 can be

uniquely identify by the values of columns in K1), and,

analogously, a key of P2 is K2.

- The join condition C can be written as C1 AND C2, with

C1  cl1=cr1 AND ... AND cln=crn. Moreover, it

holds that K1 = {cl1,...,cln} and K2 =

{M(cr1),...,M(crn)}. In other words, the join

condition contains equalities on columns that match the

keys of the left and right sides of the join.

In this case, we replace the original pattern with the

alternative FilternewC(P), where:

 newC  L AND R AND M(C2)
 AND cl1 IS NOT NULL AND ...

 AND cln IS NOT NULL

While this is a general rule that depends on the existence of

appropriate keys, Athena currently does not have a general

mechanism to propagate key information through query plans.

For that reason, we implemented specific variations of this rule

is more involved, and requires using masks, and compensating aggregations
and filters, in a similar way to the fusion of non-scalar aggregations.

to scenarios that we can guarantee correctness. For instance, we

added a rule to handle the case of P1 = GroupByK1, A1(Q1)

and P2 = GroupByK2, A2(Q2) (leveraging the fact that K1 and

K2 are the corresponding keys). An interesting special case of

this rule happens when both K1 and K2 are empty (e.g., for

scalar aggregates) and the subsequent join is a cross product. In

this case, given GroupBy,A1(Q1)⨯GroupBy,A2(Q2) and

Fuse(Q1, Q2) = (Q, M, L, R), we transform the input

pattern into FilterL AND R(GroupBy,A1 M(A2)(Q)).

C. UnionAllOnJoin

This rule handles scenarios in which customers combine

results of two computations that are very similar overall, but

differ on a single table (e.g., they union together some

analytical insight applied over different fact tables). To simplify

the exposition, we consider the case of semi-join operators as

the root of the plans that are fused, but the same ideas can be

extended to other join types.

Consider a pattern UnionAll(P1⋉c1Z1, P2⋉c2Z2) and

suppose the following conditions hold:

- Fuse(Z1, Z2) = (Z, M, L, R).

- The semi-join conditions are composed of column

equalities (c1i=d1i for C1 and c2i=d2i for C2), and we

can match the right-hand sides of those conjuncts

modulo mappings (i.e., d1i = M(d2i)).

We can let the union operation happen first between the

right tables, and have the result join back to the common left

side. That is, we replace the original pattern with:

SemiJoinUM(C1) AND ((tag=1 AND UM(L)) OR (tag=2 AND UM(R)))

 UnionAll

 Projecttag:=1,UA1(P1)

 Projecttag:=2,UA2(P2)

 Z

That is, we push the UnionAll operation below the semi-

join, and tag each input with a unique number that is then used

to reconstruct the semi-join predicate. A subtle detail is

sketched above by the UM/UA1/UA2 constructs. Recall that a

UnionAll operator takes two input schemas and positionally

maps them to its own output schema (we call such mapping UM).

Since we pushed the UnionAll below the two original semi-

joins, we somehow unified their left input schemas. This is fine

for the overall result, since the positional mapping of the

original UnionAll is preserved. However, the condition of the

semi-join itself might use columns that are not propagated

correctly and must be handled appropriately. Consider a

conjunct of C1, say, c1i=d1i and its corresponding conjunct

from C2, c2i=d2i. By definition, we know that d1i = M(d2i).

We additionally require that the left-hand side of the resulting

equality is well formed. Specifically, we need that there is a

column in the output of the pushed UnionAll that returns c1i

for rows coming from P1, and M(c2i) for rows coming from

P2. This column, in general, might not be part of UM in the

original UnionAll operator. If that case, we project a new

column on each input of the new UnionAll with the

appropriate value. We represent this information as an extra

assignments UA1 and UA2 from columns of P1 and P2 used in

the semi-join predicate, and add those columns to the UM

mapping. The extended mapping UM is used to convert C1, L,

and R from input to output columns in the resulting UnionAll.

As a simple example (using SQL for simplicity), a query like:

SELECT P1.a FROM P1

WHERE P1.b IN (SELECT z1 FROM Z)

UNION ALL

SELECT P2.c FROM P2

WHERE P2.d IN (SELECT z1 FROM Z)

would be transformed as follows (note the new columns b and

d in the new UNION ALL input schemas):

SELECT newA FROM

 (SELECT a AS newA, b as newB FROM P1

 UNION ALL

 SELECT c AS newA, d AS newB FROM P2

) innerT

WHERE newB IN (SELECT z1 FROM Z)

Note that this rule can be recursively applied to the result

(e.g., if P1 and P2 themselves are joins). In general, we can

extend this rule to deal with n-ary UnionAll operators, but we

omit those details to simplify the presentation.

D. UnionAll

Another common pattern that customers use is to compute

a common expression and then union non-necessarily disjoint

subsets of the result with different projections, as shown below:

WITH cte AS (...)

SELECT a, b FROM cte WHERE p1

UNION ALL

SELECT a, c FROM cte WHERE p2

In this case, we only need to read the source table once, but

we can generate as many replicas as necessary, depending on

how many union branches there are. We then extract the

corresponding output from each replica per each of the original

union branch filters and projections. A cross-join between the

source table and an artificial constant table can be used for this

purpose. Specifically, consider a pattern like UnionAll(P1,

P2) and suppose that Fuse(P1, P2) = (P, M, L, R) and

UM is the positional mapping of columns c1i from P1 and c2i

from P2 into the output columns of the UnionAll operator. In

that case we transform the input pattern into:

Project UM(c1i):=CASE WHEN tag=1 THEN c1i ELSE M(c2i) END, ...

 Filter (tag=1 AND L) OR (tag=2 AND R)

 CrossJoin

 P

 ConstantTable((1),(2)) as Temp(tag)

Specifically, we cross-join the fused expression P with a

constant table with two rows (with values 1 and 2). We then

filter the combined result distinguishing the compensating

filters L and R with the tag that represents the lineage of each

row, and produce the right output columns by selecting the

corresponding input columns for each output of the UnionAll

via a CASE statement.

Some extensions to this basic scheme include:

- Handling n-ary UnionAll operators by extending the

constant table definition, filters and projections.

- Removing the CASE statements if c1i= M(c2i) and

replacing them with UM(c1i):=c1i.

- If we detect a contradiction in the compensating fused

filters (i.e., L AND R  FALSE), replacing the overall

transformation with a simpler alternative:

 Project UM(c1i):=CASE WHEN L THEN c1i ELSE M(c2i) END, ...

 Filter L OR R

 P

E. Additional details

We now explore extensions to the rules we introduced,

which result in additional coverage on common scenarios.

First, the rules as described so far sometimes are strict with

respect to the patterns they require. For instance, the pattern that

triggers the GroupByJoinToWindow rule in Section IV-A is

P1 ⨝C GroupByK,A(P2). In general, there could be a filter

pushed in between the join and the group-by operator (e.g., a

single-column predicate on an aggregate column in A). Or there

could be a Project operator in between the Join and

GroupBy, generating an expression that is used as a residual

condition in C. The extensions to handle these scenarios

leverage relational algebra equivalences (e.g., pulling a filter

above a join, or carrying over projections across our

transformations). Note that these extensions need to be handled

with care (e.g., we can pull a condition above an inner join, but

not in general for outer variants).

Second, it is important to gracefully handle n-ary operators

like unions and joins. There are two approaches that we follow.

The first one is to rely on the rule engine itself and the fact that

fused subplans are still defined in terms of existing relational

algebra operators. Therefore, handling n-ary operators can be

done by a sequence of pairwise invocations of the rule. This

approach works well for scenarios in which the result of the rule

is similar enough to the original fused inputs that a subsequent

iteration is possible. An example of this scenario is the

JoinOnKeys rule (Section IV.B), for which we can linearize the

input tree by flattening joins and incrementally grow the fused

result two inputs at a time. Another approach is to extend the

Fuse operation to work natively on more than two inputs and

generalize the rules accordingly. This works well for the

UnionAll rule (Section IV.D) since applying a sequence of rules

to binary fragments of an n-ary UnionAll results in

unnecessarily complex intermediate results.

Third, an interesting problem is the interaction between the

rules in this section and other rules present in the engine. For

instance, Athena performs join reordering, and in fact, the

specific order of inputs in a join (including topology like left-

deep vs. bushy trees) influences whether rules based on query

fusion can be applied. Implementing the rules in this section so

that they operate over every join order is a possibility, but it

quickly becomes prohibitively expensive. Instead, we extend

join-based rules (Sections IV.A and IV.B) so that they operate

before join reordering. Specifically, after they match a root join

operator, we (i) recursively traverse its inputs to conceptually

obtain an n-ary join, and (ii) attempt to apply rules pairwise to

specific join inputs (and intermediate rule results) a quadratic

number of times.

Finally, there is the problem of cost-based applicability of

the rules. In general, rules operate at the logical level and

therefore it is not possible to compare costs of the plans before

and after rule applications. Optimization frameworks like

Cascades [3] allow deep exploration of alternatives and

naturally solve this problem by delaying the decision of

choosing the best plan after all alternatives have been fully

optimized. Athena’s optimizer does not yet support this form of

exploration, so we rely on local heuristics based on statistics

and plan properties to decide the applicability of each rule.

V. EXPERIMENTAL RESULTS

We now report an experimental evaluation of our

techniques over the TPC-DS benchmark [16]. We briefly show

general quantitative results on the performance of our approach,

and then examine in detail specific queries to showcase how our

techniques operate. For our experiments, we used a TPC-DS

dataset at scale factor of 3TB (which is consistent with the 99-

th percentile of data sizes that Athena customers currently

operate on), and the corresponding queries described in the

benchmark. We partitioned the largest 7 tables (store_sales,

store_returns, catalog_sales, catalog_returns,

web_sales, web_returns, and inventory) by appropriate

date columns, which results in layouts with 200 to 2000

partitions. The remaining tables were stored without

partitioning. All tables were encoded using Parquet with

Snappy compression. We evaluated all queries using Athena’s

default production configuration which serves normal customer

queries. Athena allocates resources to queries depending on

various signals including data volumes, query complexity, and

historical information. In our experiments, we let Athena

choose appropriate resources for each query, but used the same

configuration for both the baseline (i.e., without our

optimizations) and an instrumented version of the compiler

(i.e., including our new optimizations).

We observed that our approach improves the overall

execution time of the 99-query workload by 14% compared to

the baseline. However, not all queries trigger our optimization

rules. When restricted to those that changed plans, we observed

a 60% improvement in performance on average, with some

queries improving performance over 6 times. The rest of the

queries either did not change plans when incorporating our

optimization rules, or their performance characteristics

remained largely unchanged. This shows that our techniques

are not applicable to all possible queries but instead target

specific patterns. However, those patterns are not uncommon in

complex analytical queries, especially in those with common

table subexpressions. This observation is backed by analysis on

real customer data.

Figure 1: Latency improvement for selected queries.

Figure 1 shows the performance improvement of our

techniques over select queries in the benchmark. We see that

while some queries result in moderate improvements (below

10%), some others can be over 6 times faster when the new

optimizations take place.

Figure 2: Reduction in data read for selected queries.

Figure 2, in turn, shows the fraction of input data that each

query read from S3 using our approach, compared to the

baseline. The figure shows that the reduction in I/O can be

drastic, with some queries reading just 15% of the amount of

data compared to the baseline. In general, all queries in the

figure result in at least ~20% reduction in scanned data which,

due to the pay-as-you-go model that Athena uses, directly

translates to customer savings.

In the rest of this Section, we dive deeper into these selected

queries to showcase how our proposed approach affects the

resulting execution plans. We use bold text to emphasize the

query fragments that change after our optimizations.

A. Introducing Window Operators

Queries Q01, Q30 and Q65 include variants of the fragment

we used in Section I to motivate our approach. We focus on Q1

next since it looks, at first sight, different from the motivating

example. Specifically, Q01 is:

WITH customer_total_return AS (

 SELECT sr_customer_sk AS ctr_customer_sk,

 sr_store_sk AS ctr_store_sk,

 sum(sr_return_amt) AS ctr_total_return

 FROM store_returns, date_dim

 WHERE sr_returned_date_sk = d_date_sk

 AND d_year = 2000

 GROUP BY sr_customer_sk, sr_store_sk)

SELECT c_customer_id

FROM customer_total_return ctr1, store, customer

WHERE ctr1.ctr_total_return > (

 SELECT avg(ctr_total_return)*1.2

 FROM customer_total_return ctr2

 WHERE ctr1.ctr_store_sk = ctr2.ctr_store_sk)

AND s_store_sk = ctr1.ctr_store_sk

AND s_state = 'TN'

AND ctr1.ctr_customer_sk = c_customer_sk

ORDER BY c_customer_id LIMIT 100

In this case, the query can be decorrelated, which results in

a pattern that triggers the GroupByJoinToWindow rule. We

replace the join of ctr1 with the aggregated version coming

out of the decorrelation over ctr2. Note that the two inputs that

are needed for the rule are not next to each other, but separated

by other joins (on store and customer). Our extensions to

handle n-ary joins, described in Section IV.E, produce an

alternative that removes the common expression and replaces it

with a single WINDOW operator. The resulting rewrite, given

below in SQL for simplicity, is then:

WITH customer_total_return AS (

 SELECT sr_customer_sk AS ctr_customer_sk,

 sr_store_sk AS ctr_store_sk,

 sum(sr_return_amt) AS ctr_total_return

 FROM store_returns, date_dim

 WHERE sr_returned_date_sk = d_date_sk

 AND d_year = 2000

 GROUP BY sr_customer_sk, sr_store_sk)

SELECT c_customer_id

FROM store,

 customer,

 (SELECT *,

 1.2 * AVG(ctr_total_Return) OVER

 (PARTITION BY ctr_store_sk) AS aCtr

 FROM customer_total_return) ctr

WHERE ctr.ctr_total_return > ctr.aCtr

 AND s_store_sk = ctr.ctr_store_sk

 AND s_state = 'TN'

 AND ctr.ctr_customer_sk = c_customer_sk

ORDER BY c_customer_id LIMIT 100

Queries rewritten in this way result in modest improvements

in latency (below 10%, as the data scans are in parallel) but read

20% to 40% less data, which directly translates in cost savings

for customers. While evaluating these results, we identified

some opportunities to improve the performance of Window

operators, which would directly translate in better performance

overall. Additionally, we noticed that these queries use less

CPU (with savings ranging from 20% to 40%). This implies

that we could further improve our cluster utilization by

reducing the nodes allocated to these queries, which is an active

direction we are pursuing.

B. Merging Scalar Aggregates

Queries Q09, Q28 and Q88 combine aggregates over the

same common expression using slightly different predicates.

We focus on Q09 as a representative of these queries, given by

the fragment below:

SELECT CASE

 WHEN (SELECT COUNT(*)

 FROM store_sales

 WHERE ss_quantity BETWEEN 1 AND 20) > 48409437

 THEN (SELECT AVG(ss_ext_discount_amt)

 FROM store_sales

 WHERE ss_quantity BETWEEN 1 AND 20)

 ELSE (SELECT AVG(ss_net_profit)

 FROM store_sales

 WHERE ss_quantity BETWEEN 1 AND 20) END

 AS bucket1,

 <4 more variations of the CASE expression above>

FROM reason

WHERE r_reason_sk = 1

In total, there are 15 scans of the fact table store_sales,

each one returning various aggregates over different subsets of

data. The engine first performs subquery removal and

transforms the various expressions in the CASE statements into

relational subtrees connected via cross products, and then the

JoinOnKeys rule, specialized to handle scalar aggregates and

cross joins, is triggered. The resulting plan for Q09, described

below using SQL for clarity, is given by:

SELECT CASE WHEN v1 > 48409437 THEN t1 ELSE e1 END,

 <4 more variations>

FROM (

 SELECT COUNT(*) FILTER(WHERE b1) AS v1,

 AVG(ss_quantity) FILTER(WHERE b1) AS t1,

 AVG(ss_net_profit) FILTER(WHERE b1) AS e1,

 <4 more variations>

 FROM (

 SELECT *, ss_quantity between 1 and 20 as b1,

 <4 more variations>

 FROM store_sales

 WHERE ss_quantity between 1 and 20

 OR <4 more variations>)),

 Reason

 Where r_reason_sk = 1)

In general, this pattern results in the largest improvements

both in latency (from 3x to 6x improvements) and bytes read

from S3 (from 60% to 85% reduction in scanned bytes and,

consequently, cost). While the transformations are similar in

these 3 queries, there are some minor differences. Q88 has a

complex common expression involving a 4-way join, which

results in even more savings in latency. Q28 uses distinct

aggregates, which leverages our extensions to deal with

MarkDistinct operators during query fusion.

C. Refactoring UnionAll Branches

A simplified version of query Q23, which combines two

similar insights over different fact tables is as follows:

WITH freq_items AS (...), best_customer AS (...)

SELECT SUM(sales)

FROM (SELECT cs_quantity*cs_list_price AS sales

 FROM catalog_sales, date_dim

 WHERE d_year = 1999

 AND d_moy = 1

 AND cs_sold_date_sk = d_date_sk

 AND cs_item_sk IN

 (SELECT item_sk FROM freq_items)

 AND cs_bill_customer_sk IN

 (SELECT cust_sk FROM best_customer)

 UNION ALL

 SELECT ws_quantity*ws_list_price AS sales

 FROM web_sales, date_dim

 WHERE d_year = 1999

 AND d_moy = 1

 AND ws_sold_date_sk = d_date_sk

 AND ws_item_sk IN

 (SELECT item_sk FROM freq_items)

 AND ws_bill_customer_sk IN

 (SELECT cust_sk FROM best_customer))

This query uses a UnionAll operation to combine two

fragments that have almost the same structure except for the

fact tables being used (catalog_sales vs. web_sales):

web_sales ⨝ date_dim ⋉ freq_items ⋉ best_customer, and
catalog_sales ⨝ date_dim ⋉ freq_items ⋉ best_customer

Rule UnionAllOnJoin triggers repeatedly in this case, first

fusing best_customer, then freq_items, and finally

date_dim. The resulting plan (using SQL) is as follows:

WITH freq_items as (...), best_customer as (...)

SELECT SUM(sales) FROM (

 SELECT cs_quantity*cs_list_price AS sales

 FROM date_dim, (

 SELECT cs_sold_date_sk, cs_quantity, cs_item_sk,

 cs_bill_customer_sk, cs_list_price

 FROM catalog_sales

 UNION ALL

 SELECT ws_sold_date_sk, ws_quantity, ws_item_sk,

 ws_bill_customer_sk, ws_list_price

FROM web_sales)

WHERE d_year = 1999

 AND d_moy = 1

 AND cs_sold_date_sk = d_date_sk

 AND cs_item_sk in (SELECT item_sk FROM freq_items)

 AND cs_bill_customer_sk IN

 (SELECT c_customer_sk FROM best_customer))

In this case, query latency is almost 2x better, and the bytes

scanned (and corresponding costs) are dropped almost by half.

The reason is that both freq_items and best_customer are

rather expensive common expressions, which make a big

difference when one instance is removed. Another benefit of

this rewrite concerns the amount of memory that the query uses.

At larger scale factors, we noticed that the engine runs out of

working memory and starts spilling to disk intermediate state

encoded in join and aggregate hash tables. One reason is that

both instances of the common subexpressions are evaluated

concurrently. When removing the common expressions, the

amount of memory needed to hold intermediate state is reduced

by half as well, and spilling is not needed. We have seen an

additional 50% improvement in latency for those scenarios.

D. Unifying Relational Aggregates

Query Q95 exhibits a curious pattern. A simpler version is:

WITH ws_wh as (

 SELECT ws1.ws_order_number as ws_wh_number

 FROM web_sales ws1, web_sales ws2

 WHERE ws1.ws_order_number = ws2.ws_order_number

 AND ws1.ws_warehouse_sk <> ws2.ws_warehouse_sk)

SELECT <scalar aggs>

FROM web_sales,

 date_dim,

 customer_address,

 web_site

WHERE <filter and join predicates>

 AND ws_order_number IN

 (SELECT ws_wh_number FROM ws_wh)

 AND ws_order_number IN

 (SELECT wr_order_number FROM ws_wh

 JOIN web_returns

 ON wr_order_number = ws_wh_number)

We can see that the two IN clauses are very related to each

other. Specifically, the first one is redundant. The reason is that

every ws_order_number that appears in the second subquery

must also appear on the first one (since the second one further

restricts the values it returns due to joining with web_returns

on the same column). Interestingly enough, both subqueries

refer to an expensive common expression ws_wh that self joins

a fact table. Our approach is able to simplify this query relying

on the interplay between our new rules and existing ones in the

engine. Specifically, we first transform the semi-joins into

equivalent joins over a distinct on the right side. Then, we apply

a rule that pushes a distinct operation below a join whenever the

distinct and join columns agree. In this way, we obtain an

alternative that can be expressed in SQL (for simplicity) as:

WITH ws_wh as (...)

SELECT <scalar aggs> FROM

 web_sales ws1,

 date_dim,

 customer_address,

 web_site,

 (SELECT DISTINCT ws_wh_number FROM ws_wh) R0,

 (SELECT DISTINCT wr_order_number FROM web_returns) R1,

 (SELECT DISTINCT ws_wh_number FROM ws_wh) R2

WHERE <filter and join predicates>

 AND ws1.ws_order_number = R0.ws_order_number

 AND ws1.ws_order_number = R1.wr_order_number

 AND ws1.ws_order_number = R2.ws_order_number

Finally, the JoinOnKeys rule triggers and fuses R0 and R2.

Since these subqueries (R0 and R2) do not return any aggregate

and the grouping columns are the same, the fusion essentially

removes one of the duplicate expressions. The resulting query

is 30% faster and reads 40% less data from S3.

VI. CONCLUSION

In this paper we introduced new optimizations implemented

in Amazon Athena’s query engine that improve performance of

a class of queries containing common subexpressions. Our

optimizations are built on top of the concept of query fusion,

which we extended and streamlined for the purposes of this

work. We showed several real-world examples that can benefit

from this approach, and quantified the benefit of our query

rewrites on the TPC-DS benchmark. We continue identifying

additional rewrite rules that happen frequently in customer

workloads, and we plan to use in the future the fusion

infrastructure of Section III as a building block of our work on

generic spooling of subqueries that go beyond the techniques

introduced in this paper.

REFERENCES

[1] Jyoti Leeka and Kaushik Rajan. Incorporating superoperators in big-data
query optimizers. In PVLDB, 13(3):348–361, 2019.

[2] Partho Sarthi et al. Generalized Sub-Query Fusion for Eliminating
Redundant I/O from Big-Data Queries. 14th USENIX Symposium on
Operating Systems Design and Implementation, 2020.

[3] G. Graefe. The Cascades framework for query optimization. Data
Engineering Bulletin, 18(3), 1995.

[4] Amazon Athena. https://aws.amazon.com/athena

[5] Amazon Simple Storage Service. https://aws.amazon.com/s3

[6] The JavaScript Object Notation (JSON) Data Interchange Format.
https://datatracker.ietf.org/doc/html/rfc8259

[7] The ORC Specification Format.
https://orc.apache.org/specification/ORCv1

[8] Apache Avro Specification.
https://avro.apache.org/docs/current/spec.html

[9] Apache Parquet Specification.
https://parquet.apache.org/documentation/latest/

[10] Snappy, a fast compressor/decompressor.
https://github.com/google/snappy/

[11] A Massively Spiffy Yet Delicately Unobtrusive Compression Library.
https://www.zlib.net/

[12] GZip file format specification version 4.3.
https://datatracker.ietf.org/doc/html/rfc1952

[13] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei
Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema
Shingte, Christopher Berner. Presto: SQL on Everything. In Proceedings
of IEEE ICDE, 2019.

[14] AWS Glue Documentation.
https://docs.aws.amazon.com/glue

[15] AWS Lambda Documentation.
https://docs.aws.amazon.com/lambda

[16] Transaction Processing Performance Council. TPC Benchmark DS.
http://tpc.org/TPC_Documents_Current_Versions/pd

f/TPC-DS_v3.2.0.pdf

[17] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD, 2015.

[18] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie
Chaiken, Darren Shakib. SCOPE: parallel databases meet MapReduce.
VLDB J. 21(5): 611-636 (2012)

[19] Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu,
H., Wyckoff, P., Murthy, R.: Hive—a warehousing solution over a
MapReduce framework. In: Proceedings of VLDB Conference (2009)

[20] Cesar Galindo-Legaria, Milind Joshi. Orthogonal optimization of
subqueries and aggregation. In Proceedings of Sigmod (2001).

[21] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, Wolfgang
Lehner. Efficient exploitation of similar subexpressions for query
processing. In Proceedings of Sigmod (2007).

[22] Amazon Redshift. https://aws.amazon.com/redshift

[23] Amazon EMR. https://aws.amazon.com

