
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Computation Reuse via Fusion in Amazon Athena 

Nicolas Bruno  

AWS Athena 

Amazon 

Redmond, US  

nicbrun@amazon.com 

 

 

Johnny Debrodt 

AWS Athena 

Amazon 

New York, US 

jdebrodt@amazon.com 

 

 

Chujun Song 

Computer Science Dept. 

University of Maryland 

College Park, US 

cjsong@cs.umd.edu 

 

 

Wei Zheng  

AWS Athena 

Amazon 

Palo Alto, US  

wzheamzn@amazon.com 

Abstract— Amazon Athena is a serverless, interactive query 

service that allows efficiently analyzing large volumes of data 

stored in Amazon S3 using ANSI SQL. Some design choices in the 

engine, especially those concerning streaming of intermediate 

results, can result in suboptimal executions for query patterns that 

have common expressions. In this paper we build upon recent 

work and introduce new optimizations in Athena that handle some 

common expression scenarios without materializing intermediate 

results or duplicating work. We describe commonalities and 

differences with previous work, and provide experimental results 

that validate our approach on TPC-DS data. 
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I. INTRODUCTION 

Amazon Athena [4] is an interactive query service that 
makes it easy to efficiently analyze, using ANSI SQL, large 
volumes of data stored using open formats. Customers do not 
need to perform Extract-Transform-Load (ETL) operations to 
ingest data in Athena. Instead, they define schemas pointing to 
data residing in Amazon S3 [5] and immediately start issuing 
queries and getting insights 1 . To that end, Athena natively 
supports a variety of data formats, including CSV (comma-
separated values), JSON [6], ORC [7], Avro [8], and 
Parquet [9], and several compression alternatives, such as 
Snappy [10], Zlib [11] and Gzip [12]. 

Athena is serverless, so there is no infrastructure to setup, 
provision or manage. The control plane allocates compute 
resources on-demand across multiple availability zones and 
transparently scales up without the need of complex tuning 
knobs. Billing follows a pay-as-you-go model, in which 
customers are charged a fixed amount per TB scanned, without 
additional storage charges beyond those incurred by S3 and 
dependent services like AWS Glue [14] and AWS Lambda [15]. 

The query engine in Athena has its roots in the Presto 
system [13]. Although the engine diverged over time from the 
initial Presto fork, it shares various design philosophies and 
implementation choices that result in a flexible and performant 
solution. In particular, the query engine is architected to leverage 
streaming during compilation, scheduling, and execution. For 
instance, split enumeration (i.e., the task of determining which 

 
1 Note that while S3 is the most common data source in Athena, the system 

supports several other sources via federated connectors. 

files to retrieve to evaluate queries) is not synchronous, and the 
engine starts evaluating portions of the query before 
enumeration is finished. Also, intermediate shuffle operations, 
which are required for correctness in a distributed setting, are 
not materialized to stable storage. Instead, intermediate results 
are streamed from producer to consumer tasks. 

These architectural decisions result in an engine that 
typically exhibits interactive query performance even for 
complex queries and large amounts of input data. At the same 
time, for certain query patterns, they can cause suboptimal 
executions. A specific scenario, which we focus on in this paper, 
is that of common subexpressions. Consider, for instance, a 
variant of query 65 in the TPC-DS benchmark [16]: 

SELECT s_store_name, i_item_desc, revenue 

FROM store, item, 

    (SELECT ss_store_sk, AVG(revenue) AS ave 

     FROM (SELECT ss_store_sk, ss_item_sk,  

               sum(ss_sales_price) AS revenue 

           FROM store_sales, date_dim 

           WHERE ss_sold_date_sk = d_date_sk 

         AND d_month_seq BETWEEN 1212 AND 1247 

           GROUP BY ss_store_sk, ss_item_sk) sa 

     GROUP BY ss_store_sk) sb, 

    (SELECT ss_store_sk, ss_item_sk,  

            sum(ss_sales_price) AS revenue 

     FROM store_sales, date_dim 

     WHERE ss_sold_date_sk = d_date_sk 

     AND d_month_seq BETWEEN 1212 AND 1247 

     GROUP BY ss_store_sk, ss_item_sk) sc 

WHERE sb.ss_store_sk = sc.ss_store_sk 

  AND sc.revenue <= 0.1 * sb.ave  

  AND s_store_sk = sc.ss_store_sk 

  AND i_item_sk = sc.ss_item_sk 

ORDER BY s_store_name, i_item_desc LIMIT 100 

 

This query uses the same common block twice in the FROM 

clause (shown in bold above). Due to the streaming nature of the 
query engine, plans consist of trees of operators without 
materialization points. Athena thus processes the query by 
evaluating the common portion twice. This is suboptimal, 
especially if the duplicated computation is expensive. Due to the 
pay-as-you-go billing model, this approach also increases the 
cost to customers when executing these types of queries. 
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A common approach to deal with common subexpressions 
is via spooling [21]. The idea is to evaluate a common 
computation once and reuse the intermediate results by multiple 
consumers (inducing DAG-like execution plans). Spooling is a 
general approach to deal with common subexpressions, and this 
solution is part of Athena’s future roadmap. However, in certain 
scenarios we can do better than spooling. Some query shapes 
can be handled in a better way by completely removing multiple 
instances of the common subquery without the need to store 
intermediate results. In this way we preserve the streaming 
characteristics of the engine and return results efficiently while 
avoiding duplicate computations. As an example, the query 
above can be rewritten as follows: 

SELECT s_store_name, i_item_desc, revenue 

FROM store, item,  

    (SELECT ss_store_sk, ss_item_sk, revenue,  

            AVG(revenue) OVER (PARTITION BY 

                            ss_store_sk) avgR  

     FROM (SELECT ss_store_sk, ss_item_sk,     

               sum(ss_sales_price) AS revenue 

           FROM store_sales, date_dim 

           WHERE ss_sold_date_sk = d_date_sk  

         AND d_month_seq BETWEEN 1212 AND 1247 

           GROUP BY ss_store_sk, ss_item_sk) X) Y 

WHERE revenue <= 0.1 * avgR  

AND ss_store_sk = s_store_sk 

AND ss_item_sk = i_item_sk 

ORDER BY s_store_name, i_item_desc LIMIT 100 

 

For this rewrite, we leverage the specific pattern of the query, 
which aggregates the common expression on ss_store_sk and 

then joins the aggregated result back with the common 
expression on column ss_store_sk. We can achieve the same 
result by using a windowed aggregation partitioned on 
ss_store_sk, and keeping rows for which ss_store_sk is not 

NULL (implicitly done by the subsequent join with table store). 

In this way, we combine a common Join/Aggregation pattern 
over a common expression into an alternative formulation that 
evaluates and reads the input only once. This rewrite reduces the 
query latency by 48% and the amount of data scanned by almost 
50%, which translates in lower bills to customers. 

The techniques described in this paper can also handle 
scenarios in which the common expressions are not exactly the 
same, but can still be rewritten into a fragment that generates a 
superset of the required rows and columns, and handle the 
differences via compensating actions. As a simple example: 

WITH cte as (...complex_subquery...) 

SELECT customer_id FROM cte WHERE fname = 'John' 

UNION ALL 

SELECT customer_id FROM cte WHERE lname = 'Smith' 

 

can be rewritten into an equivalent query as: 

WITH cte as (...complex_subquery...) 

SELECT customer_id  

FROM cte, (VALUES (1), (2)) T(tag) 

WHERE (fname = 'John' AND tag=1)  

   OR (lname = 'Smith' AND tag=2) 

 

Note that, in general, not all queries with common 
expressions can be rewritten by eliminating both duplication of 
work and materialization (the general case should be handled by 

spooling intermediate results). However, there are several 
scenarios for which the rewrites shown in this work are 
applicable. In those cases, the resulting rewrites are more 
efficient than alternatives that materialize intermediate results, 
which not only write those intermediates, but need to read them 
multiple times. For instance, the TPC-DS benchmark improves 
over 14% when our techniques are enabled, and specifically 
improves almost 60% for the subset of applicable queries. 

It is also worth noting that the same techniques are 
completely applicable to any database system based on query 
rewriting, since they do not require new operators or execution 
models. In fact, other analytic engines within AWS, like 
Amazon Redshift [22] and Amazon EMR [23], are already 
incorporating these improvements. 

The rest of the paper is structured as follows. In Section II 
we review previous work on query fusion and adapt it to power 
our optimizations. In Section III we describe how we implement 
query fusion in Athena, and in Section IV we introduce 
optimization rules that rely on query fusion. In Section V we 
present an experimental evaluation of our techniques on the 
TPC-DS benchmark, and we conclude in Section VI. 

II. RELATED WORK 

Big-data query optimizers [13, 17-19] typically borrow and 

build upon rewrite rules from the database literature. Our 

approach follows this pattern by leveraging and extending 

recent work in the literature, and specifically the query fusion 

work of Blitz [1] and Resin [2]. 

The Blitz system extends a query optimizer with specific 

rules that find and substitute subquery patterns with streaming 

super-operators. Two of these rules are self-joins and self-

unions that follow a GroupBy on the same input table, and the 

third pattern is a specialized implementation of a min 

aggregation followed by a join. Blitz transformations are useful 

whenever applicable, but have some drawbacks. The patterns 

cover a rather small fraction of queries, and the resulting super-

operators do not compose well with each other and therefore 

cannot be chained together. Our approach is able to cover the 

optimizations in Blitz without the need of super-operators, as 

discussed in Section III. 

Resin extends the work in Blitz by formalizing the concept 

of query fusion, which identifies sub-queries computing on 

overlapping data, and fuses them into a single computation with 

compensating actions to retrieve the original results. This 

analysis does not require the subqueries to be syntactically the 

same nor produce the same output. The fused query can be used 

once in general via spooling, and in some cases, it can eliminate 

spooling altogether. For that purpose, Resin introduces new 

operators (e.g., ResinMap, ResinReduce) to implement query 

fusion. These operators are simpler to manipulate than the Blitz 

super-operators, and therefore can be applied to broader 

scenarios. Our work is based on the Resin work, with the 

following differences and extensions: 

 

- Our approach handles scenarios that can fully eliminate 

common subqueries without materializing intermediate 

results. For that reason, we streamline the discovery of 



matches by embedding the process in optimization 

rules, without using signatures to identify ‘far-away’ 

matches that could not be leveraged. 

- We introduce optimization rules that leverage query 

fusion to novel query patterns (e.g., fusing subqueries 

that differ in a source table, or better handling of 

diamond-like shapes on n-ary operators). 

- We implement query fusion without introducing new 

operators like ResinMap/ResinReduce. Instead, we 

express the resulting computation using standard 

relational operators. As a consequence, our new rules 

can be composed in a better way with existing ones, 

since there are no new operators to handle. 

Additionally, it avoids the requirement of additional 

code generation for new operators. 

- We extend query fusion to cover operators that are 

unique to Athena (e.g., MarkDistinct) and in that 

way, better handle constructs like distinct aggregates. 

III. QUERY FUSION PRIMITIVES 

We next describe our implementation of query fusion, 

which serves as building block in the optimization rules we 

describe in Section IV. Query fusion is a recursive procedure 

that operates over logical algebraic trees. Specifically, we 

define a function Fuse that takes two input plans and returns 

either ⊥ (when fusion is not possible), or a 4-tuple fused result 

otherwise. If Fuse(P1, P2) = (P, M, L, R), then: 

- P is the fused resulting plan. The schema of P includes 

all output columns in P1 and, optionally, additional 

output columns from P2. 

- M is a mapping from the output columns of P2 to output 

columns of P. 

- L and R are two filter conditions defined over the output 

columns of P to restore P1 and P2, respectively. 

 

Semantically, we can reconstruct P1 and P2 as follows: 

 
P1 = ProjectoutCols(P1)(FilterL(P)) 

P2 = ProjectM(outCols(P2))(FilterR(P)) 

where outCols(P) denotes the output columns of plan P. 
 

In the rest of this section, we define Fuse(P1,P2) based 

on the shape of the input plans P1 and P2. For now, we require 

that both P1 and P2 have the same root operator, and explain 

how we relax this assumption in Section III.G. To illustrate 

each definition, we give samples based on the TPC-DS schema. 

 

A. Table Scans 

Fusing two table scans, Fuse(Scan(T1), Scan(T2)), 

succeeds when T1 and T2 denote the same table (otherwise, the 

operation returns ⊥). The fused result is defined as: 

 
(Scan(T1), columnMap(T2, T1), TRUE, TRUE) 

 
2 Strictly speaking, M is a map from columns to columns. We abuse the 

notation for simplicity and reuse M to map expressions in the natural way. 

where columnMap(T2, T1) maps positionally the output 

columns of T2 to those of T1 (note that the engine follows the 

common practice of assigning new column identities to each 

instance of the same table). As an example, fusing two query 

fragments that scan the same table: 

 
SELECT i_item_sk AS sk, i_brand AS brand  

FROM item 

 

SELECT i_brand AS brand2, i_size AS size  

FROM item 

 

results in a fused result (P, M, TRUE, TRUE) where: 

 
P: SELECT i_item_sk AS sk,  

          i_brand AS brand,  

          i_size AS size  

   FROM item 

M: brand2 → brand 

 

B. Filters 

Consider F1=FilterC1(P1) and F2=FilterC2(P2). We 

first recursively fuse the subplans. If this is not successful, we 

propagate ⊥. Else, if Fuse(P1, P2)=(P, M, L, R) we 

define Fuse(F1, F2) as2: 

 
(FilterC1 OR M(C2)(P), M, L AND C1, R AND M(C2)) 

 

Note that if C1 is equivalent to M(C2), we simplify the fused 

result as (FilterC1(P), M, L, R). 
 

As an example, fusing two query fragments that scan the 

same table with different filters: 

 
SELECT i_item_desc 

FROM item 

WHERE i_category = 'Music' AND i_brand_id > 1000 

 

SELECT i_item_desc 

FROM item 

WHERE i_category = 'Music' AND i_brand_id < 50 

 

results in (P, ∅, L, R), where: 

 
P: SELECT i_item_desc FROM item 

   WHERE i_category = 'Music' AND 

         (i_brand_id < 50 OR i_brand_id > 1000) 

L: i_brand_id > 1000 AND i_category = 'Music' 

R: i_brand_id < 50 AND i_category = 'Music' 

 

C. Projections 

Consider R1=ProjectA1(P1) and R2=ProjectA2(P2), 

where A1 and A2 are sequences of assignments of expressions 

to new variables (e.g., [x:=a+1, y:=b]) . We first recursively 

compute Fuse(P1, P2) and propagate any ⊥ result. 



Otherwise, if fusing P1 and P2 returns (P, M, L, R), we 

define the result of Fuse(R1, R2) as: 

 
(ProjectA(P), M’, L, R) 

 

where A contains all assignments in A1 and M’ contains all 

mappings in M. Additionally, for each assignment a:=expr in 

A2, we check whether A1 contains an assignment of the form 

b:=M(expr). If that is the case, we add a→b to the resulting 

mapping M’. Otherwise, we add b:=M(expr) to the resulting 

assignments A. For instance, if T(a) is a table with a single 

column a, and T’(a’) denotes another instance of T with a new 

column a’, the result of fusing Projectx:=a+1(Scan(T)) and 

Projecty:=a’+1, z:=3(Scan(T’)) is: 

 
(Projectx:=a+1, z:=3(T), {a’→a, y→x}, TRUE, TRUE) 

 

As an example, fusing two query fragments that scan the 

same table with different projections: 

 
SELECT i_brand_id + 1 AS brand_plus_one 

FROM item 

 

SELECT new_brand_id + 1 AS x, 'new brand' AS y 

FROM (SELECT i_brand_id AS new_brand_id 

      FROM item) t 

 

results in (P, M, TRUE, TRUE) where: 

 
P: SELECT i_brand_id + 1 AS brand_plus_one,  

          'new brand plus one' AS y 

   FROM item 

M: x → brand_plus_one 

 

D. Joins 

Consider now J1 = JL1⨝C1JR1 and J2 = JL2⨝C2JR2. 

For simplicity we assume inner joins, but the results are similar 

for outer- and semi-join variants. To fuse J1 and J2 we first 

attempt to pairwise fuse the left and right sides of J1 and J2, 

and return ⊥ if any recursive call fails to deliver a fused result. 

Otherwise, assume Fuse(JL1, JL2) = (JL, ML, LL, RL) 

and Fuse(JR1, JR2) = (JR, MR, LR, RR). We first obtain 

the resulting column mapping as M = MLMR since ML and MR 

are non-overlapping. Using this mapping, we check whether the 

join conditions in J1 and J2 are equivalent, that is, whether C1 

 M(C2). If this is not the case, we return ⊥3. Otherwise, we 

define Fuse(J1, J2) as: 

 
(JL⨝C1JR, M, LL AND M(LR), RL AND M(RR)) 

 

For instance, fusing two fragments that join the same tables: 

 
SELECT ss_store_sk AS a_sk, ss_quantity 

FROM store_sales JOIN item 

ON ss_item_sk = i_item_sk 

WHERE ss_addr_sk > 20 AND i_size IN ('m', 'l') 

 
3 Note that we can still address scenarios in which the conditions do not 

fully match by calculating the common portion and treat residuals as filters. 

SELECT ss_store_sk AS b_sk 

FROM store_sales, item 

ON ss_item_sk = i_item_sk 

WHERE i_size = 'l' 

 

results in (P, M, L, R) where 
P: SELECT ss_store_sk AS a_sk, ss_quantity 

   FROM store_sales JOIN item 

   ON ss_item_sk = i_item_sk 

   WHERE i_size = 'l' 

     OR (ss_addr_sk > 20 AND i_size IN ('m', 'l')) 

M: b_sk → a_sk 

L: ss_addr_sk > 20 AND i_size IN ('m', 'l') 

R: i_size = 'l' 

 

Note that this approach would not fuse trees with different 

join orders. Although in principle this sounds rather limiting, in 

practice (i) many queries use common table expressions (CTEs) 

to reuse computation and thus start with the same join tree, and 

(ii) an earlier compilation phase of join canonicalization 

typically produces compatible join orders for subqueries that 

can be fused. A more general handling of joins, however, is part 

of future work and requires flattening the join tree into an n-ary 

join and performing a more sophisticated matching of its inputs 

via techniques inspired from materialized view matching. 
 

E. Aggregations 

Aggregate functions in Athena have additional syntactic 

sugar that simplifies the treatment of fusion. Specifically, each 

aggregate is a pair (a, m) where a is a traditional aggregate 

function (e.g., COUNT(*)) and m is a boolean expression, called 

the mask of the aggregate. The semantics of this construct is 

that during aggregation we only consider input tuples that 

satisfy the mask for the purpose of the aggregate, and discard 

the rest. Note that each aggregate function in a GroupBy 

operator can have different mask expressions, and thus 

GroupBy operators can compute aggregations over different 

subsets of data. Consider G1=GroupByK1,A1(P1), where K1 is 

the set of grouping columns and A1 is the list of aggregate 

functions [ci:=(ai,mi)], and analogously consider 

G2=GroupByK2,A2(P2). 

To fuse G1 and G2 we proceed as follows. We first attempt 

to recursively fuse the inputs and propagate any failure ⊥. 

Otherwise, the fusion of P1 and P2 returns (P, M, L, R). We 

then check whether the grouping columns are equivalent (i.e., 

whether K1 = M(K2)) and return ⊥ if they are not. Otherwise, 

we initialize the new mapping Mnew = M, and assemble the new 

aggregations Anew. To that end, for each ci:=(ai,mi) in A1, we 

add to Anew an aggregation with a tighter mask ci:=(ai, mi 
AND L). Then, for each cj:=(aj,mj) in A2, we check whether 

(M(aj), M(mj AND R)) already exists in Anew. If it does (and 

is assigned to some variable cnew) we add cj→cnew to the new 

mapping Mnew. If it does not, we add a new aggregate cj 

:=(M(aj), M(mj AND R)) to Anew (note that the new column 

cj does not exist in Anew or P and therefore this is well-formed). 



There is a subtle detail before assembling the final result. 

When we deal with non-scalar GroupBy operators (i.e., non-

empty grouping columns), aggregations with masks return an 

aggregated row even if all input rows have been discarded by 

the mask. This is not the desired result during fusion, since 

groups for which all input rows were discarded should not 

produce any row. Thus, for non-scalar GroupBy operators for 

which L (respectively, R) are not TRUE, we add to Anew 

compensating aggregates countL:=(COUNT(*), L) 

(respectively, countR:=(COUNT(*), R)), and define 

compensating filters compL   countL>0 (respectively, 

compR  countR>0) . For a scalar aggregate or in case L (or 

R) are TRUE, we do not modify Anew and define compL (or 

compR) as TRUE. With all this preparation, we define 

Fuse(G1, G2) as: 

 
(GroupByK1, Anew(P), Mnew, compL, compR) 

 

As an example, given G1 and G2 defined as: 

 
G1 = GroupBy{a}, x:=(SUM(b), TRUE)(Filterc=1(T)) 

G2 = GroupBy{a}, y:=(AVG(b), d=1)(T)) 

The result of fusing G1 and G2 is (P, M, z>0, TRUE), 

where M is the trivial mapping from columns in T, and P is 

 
GB{a},[x:=(SUM(b),c=1),y:=(AVG(b),d=1),z:=(COUNT(*),c=1)](T) 

 

As another example, fusing two query fragments that 

aggregate on the same column of the same table: 

 
SELECT i_item_sk,  

       MIN(i_brand_id) AS mi 

FROM item 

WHERE i_color = 'red' 

GROUP BY i_item_sk 

 

SELECT i_item_sk,  

       AVG(i_category_id)  

         FILTER (WHERE i_size = 'm') AS avgc 

FROM item 

GROUP BY i_item_sk 

 

results in (P, ∅, TRUE, TRUE) where: 

 
P: SELECT i_item_sk, 

          MIN(i_brand_id)  

            FILTER (WHERE i_color = 'red') AS mi, 

          AVG(i_category_id)  

            FILTER (WHERE i_size = 'm') AS avgc 

FROM item 

GROUP BY i_item_sk 

 

An important consequence of implementing query fusion 

without creating new custom operators, is that orthogonal rules 

are applicable to fused results (e.g., expression simplification 

over masks, or rules over GroupBy operators can automatically 

operate over intermediate results with no changes). 

F. Distinct Aggregations 

In addition to traditional mechanisms to implement distinct 

aggregates (e.g., via self-joins), Athena offers an alternative 

that relies on a new relational operator called MarkDistinct. 

This operator is defined by a relational input P and a set D of 

columns in P and returns a new Boolean column d (we denote 

this as MarkDistinctdD(P)). This operator passes through 

the input P and assigns new values to column d. The value of d 

is TRUE each time a combination of values of D is seen for the 

first time in P, and FALSE otherwise. In conjunction with 

masks, we can implement distinct aggregates using the 

MarkDistinct operator. For instance, the expression 

GroupBy{a},x:=count(distinct b), y:=count(distinct c)(T) can be 

implemented as: 

 
GroupBy{a},[x:=(count(b),db),y:=(count(c),dc)] 

  MarkDistinctdb{b} 

    MarkDistinctdc{c} 

      T 

 

Consider now fusing M1=MarkDistinctd1D1(P1) and 

M2=MarkDistinctd2D2(P2). If Fuse(P1, P2) returns ⊥, 

we propagate this value. Otherwise, it returns (P, M, L, R), 

and we define Fuse(M1, M2) as (Q, M, L, R), where 
 

Q ≡ MarkDistinctd1D1{m1} 

      MarkDistinctd2D2{m2} 

        Projectm1:=L, m2:=R 

          P 

 

That is, we define new boolean columns m1 and m2 for the 

compensating filters L and R, and add those new columns to the 

corresponding MarkDistinct column sets to operate on. This 

way, MarkDistinct operators would distinguish the first time 

they process a new instance value of the original column set and 

whether this value satisfied or not the compensating filters.  

There are a few optimizations to this basic scheme, like 

extending the MarkDistinct operator itself to consider masks 

natively, skipping the generation of extra columns from the 

Project operator if the compensating filters are TRUE, or 

processing a chain of MarkDistinct operators on both sides 

holistically rather than one pair at a time. We omit those 

extensions to simplify the presentation. 

 

G. Additional details 

So far, we showed how we define the Fuse operation 

whenever both inputs have the same root operator, and for a 

selected set of relational operators. We next describe some 

additional details that extend the mechanism described so far to 

handle more scenarios. 

First, there are some operators that accept a default 

implementation of the Fuse operation. Consider for instance 

the EnforceSingleRow operator, which takes an input and 

enforces that it returns a single row (or otherwise fails the 

query). In this case, the fusion of two queries that have this 

operator as the root can be done in a generic way, by (i) 



recursively applying the Fuse operation to the input of the root 

operator, (ii) checking whether the operators are equivalent 

modulo the returned mapping, and (iii) replacing the child of 

the first query with the result of the recursive Fuse call. 

Second, we outline a best-effort approach to generalize 

fusion whenever the root operators of the input queries are not 

the same. Suppose that the left operator is MarkDistinct and 

the right operator is not. Because MarkDistinct just adds a 

new column to the result, we can (i) skip the MarkDistinct 

operator on the left side, (ii) fuse its child with the right side, 

and (iii) if successful, add back the MarkDistinct operator to 

the fused result. Other extensions include manufacturing a 

trivial projection if one of the queries has a Project root 

operator and the other does not, or add a trivial filter (TRUE) if 

the root of one subquery has a Filter operator and the other 

does not. These extensions are subtle since they can produce 

correct but inefficient fused queries. For instance, suppose that 

P1 =  Filter(T) and P2 = MarkDistinct(Filter(T)). 

In this case, we could either skip the MarkDistinct operator 

in P2 and match the child with P1, or manufacture a trivial filter 

on top of P2 and fuse it with P1. Clearly, the first alternative is 

better and would produce a good fused result, while the second 

alternative would fail to push the disjunction of both filters 

down to the scan due to the injected trivial filter. As this 

example demonstrates, a careful mechanism to decide 

compensating actions in case of non-matching root operators is 

crucial to have a flexible and performant solution. In general, 

however, more fundamental extensions to generalize fusion for 

queries that are expressed in structurally different ways is an 

important research topic and part of future work. 

IV. OPTIMIZATION RULES 

We now describe specific optimization rules we 

incorporated into the Athena engine, which use query fusion as 

a building block. We first describe individual rules in a 

simplified way, and later complement the presentation with 

some additional details that make them more widely applicable. 

A. GroupByJoinToWindow 

This rule transforms a common pattern in which a common 

expression is aggregated and joined back to itself to obtain 

additional information on the aggregated rows. Intuitively it is 

a calculation that extends an input relation with aggregates 

computed on a subset of columns. Window functions operate in 

this manner and can be used to rewrite the original pattern. 

 

Consider an input pattern like P1 ⨝C GroupByK,A(P2) and 

suppose that the following conditions hold: 

- Fuse(P1, P2) = (P, M, TRUE, TRUE)4. 

- The join condition C can be written as C1 AND C2, 

where C1 = cl1=cr1 AND ... AND cln=crn, and 

moreover, K = {cr1,...,crn}. In other words, the 

join condition contains equalities with columns that 

 
4 To simplify the presentation, we consider the case in which the filter 

conditions of the fused result are TRUE. The extension to arbitrary conditions 

match the grouping columns on the right-hand side and 

remaining conditions C2 that would result in residuals. 

- For each cli=cri in C1, we have that cli = M(cri), 

so that the join can be seen as an equijoin (with extra 

predicates) modulo the mapping function M. 

 

In this case, we replace the original pattern with: 

 
Filter M(C2) 

  Window A OVER(PARTITION BY cl1...cln) 

    Filter ANDi=1..n (cli IS NOT NULL) 

      P 

 

The input pattern can either be directly specified in the input 

query or via a decorrelation opportunity [20] for queries like: 

 
   SELECT * FROM T T1 

   WHERE T1.a = (SELECT AVG(c) 

                 FROM T T2 

                 WHERE T2.b = T1.b)  

B. JoinOnKeys 

This rule addresses a common pattern in which similar 

subqueries, which return different views of the same data, are 

self-joined together. Because of the existence of keys, each row 

from the left matches with at most one row from the right. 

Therefore, we are extending each row that matches with 

columns from both sides. A NOT NULL condition is needed to 

remove rows that do not have a match on the other side, and 

residual predicates are added to ensure the original result. 

 

Consider a pattern like P1 ⨝C P2 and suppose the 

following conditions hold: 

- Fuse(P1, P2) = (P, M, L, R). 

- A key of P1 is K1 (i.e., every row from P1 can be 

uniquely identify by the values of columns in K1), and, 

analogously, a key of P2 is K2. 

- The join condition C can be written as C1 AND C2, with 

C1  cl1=cr1 AND ... AND cln=crn. Moreover, it 

holds that K1 = {cl1,...,cln} and K2 = 

{M(cr1),...,M(crn)}. In other words, the join 

condition contains equalities on columns that match the 

keys of the left and right sides of the join. 

 

In this case, we replace the original pattern with the 

alternative FilternewC(P), where: 
 

      newC   L AND R AND M(C2)  
             AND cl1 IS NOT NULL AND ...  

             AND cln IS NOT NULL 

 

While this is a general rule that depends on the existence of 

appropriate keys, Athena currently does not have a general 

mechanism to propagate key information through query plans. 

For that reason, we implemented specific variations of this rule 

is more involved, and requires using masks, and compensating aggregations 
and filters, in a similar way to the fusion of non-scalar aggregations. 



to scenarios that we can guarantee correctness. For instance, we 

added a rule to handle the case of P1 = GroupByK1, A1(Q1) 

and P2 = GroupByK2, A2(Q2) (leveraging the fact that K1 and 

K2 are the corresponding keys). An interesting special case of 

this rule happens when both K1 and K2 are empty (e.g., for 

scalar aggregates) and the subsequent join is a cross product. In 

this case, given GroupBy,A1(Q1)⨯GroupBy,A2(Q2) and 

Fuse(Q1, Q2) = (Q, M, L, R), we transform the input 

pattern into FilterL AND R(GroupBy,A1 M(A2)(Q)). 

C. UnionAllOnJoin 

This rule handles scenarios in which customers combine 

results of two computations that are very similar overall, but 

differ on a single table (e.g., they union together some 

analytical insight applied over different fact tables). To simplify 

the exposition, we consider the case of semi-join operators as 

the root of the plans that are fused, but the same ideas can be 

extended to other join types. 

 

Consider a pattern UnionAll(P1⋉c1Z1, P2⋉c2Z2) and 

suppose the following conditions hold: 

- Fuse(Z1, Z2) = (Z, M, L, R). 

- The semi-join conditions are composed of column 

equalities (c1i=d1i for C1 and c2i=d2i for C2), and we 

can match the right-hand sides of those conjuncts 

modulo mappings (i.e., d1i = M(d2i)). 

 

We can let the union operation happen first between the 

right tables, and have the result join back to the common left 

side. That is, we replace the original pattern with: 

 
SemiJoinUM(C1) AND ((tag=1 AND UM(L)) OR (tag=2 AND UM(R))) 

  UnionAll 

    Projecttag:=1,UA1(P1) 

    Projecttag:=2,UA2(P2) 

  Z 

 

That is, we push the UnionAll operation below the semi-

join, and tag each input with a unique number that is then used 

to reconstruct the semi-join predicate. A subtle detail is 

sketched above by the UM/UA1/UA2 constructs. Recall that a 

UnionAll operator takes two input schemas and positionally 

maps them to its own output schema (we call such mapping UM). 

Since we pushed the UnionAll below the two original semi-

joins, we somehow unified their left input schemas. This is fine 

for the overall result, since the positional mapping of the 

original UnionAll is preserved. However, the condition of the 

semi-join itself might use columns that are not propagated 

correctly and must be handled appropriately. Consider a 

conjunct of C1, say, c1i=d1i and its corresponding conjunct 

from C2, c2i=d2i. By definition, we know that d1i = M(d2i). 

We additionally require that the left-hand side of the resulting 

equality is well formed. Specifically, we need that there is a 

column in the output of the pushed UnionAll that returns c1i 

for rows coming from P1, and M(c2i) for rows coming from 

P2. This column, in general, might not be part of UM in the 

original UnionAll operator. If that case, we project a new 

column on each input of the new UnionAll with the 

appropriate value. We represent this information as an extra 

assignments UA1 and UA2 from columns of P1 and P2 used in 

the semi-join predicate, and add those columns to the UM 

mapping. The extended mapping UM is used to convert C1, L, 

and R from input to output columns in the resulting UnionAll. 

As a simple example (using SQL for simplicity), a query like: 

 
SELECT P1.a FROM P1  

WHERE P1.b IN (SELECT z1 FROM Z)  

UNION ALL 

SELECT P2.c FROM P2  

WHERE P2.d IN (SELECT z1 FROM Z)  

 

would be transformed as follows (note the new columns b and 

d in the new UNION ALL input schemas): 

 
SELECT newA FROM 

  (SELECT a AS newA, b as newB FROM P1 

   UNION ALL 

   SELECT c AS newA, d AS newB FROM P2 

   ) innerT 

WHERE newB IN (SELECT z1 FROM Z)  

 

Note that this rule can be recursively applied to the result 

(e.g., if P1 and P2 themselves are joins). In general, we can 

extend this rule to deal with n-ary UnionAll operators, but we 

omit those details to simplify the presentation.  

D. UnionAll 

Another common pattern that customers use is to compute 

a common expression and then union non-necessarily disjoint 

subsets of the result with different projections, as shown below: 

 
WITH cte AS (...) 

SELECT a, b FROM cte WHERE p1 

UNION ALL 

SELECT a, c FROM cte WHERE p2 

 

In this case, we only need to read the source table once, but 

we can generate as many replicas as necessary, depending on 

how many union branches there are. We then extract the 

corresponding output from each replica per each of the original 

union branch filters and projections. A cross-join between the 

source table and an artificial constant table can be used for this 

purpose. Specifically, consider a pattern like UnionAll(P1, 

P2) and suppose that Fuse(P1, P2) = (P, M, L, R) and 

UM is the positional mapping of columns c1i from P1 and c2i 

from P2 into the output columns of the UnionAll operator. In 

that case we transform the input pattern into: 

 
Project UM(c1i):=CASE WHEN tag=1 THEN c1i ELSE M(c2i) END, ... 

  Filter (tag=1 AND L) OR (tag=2 AND R) 

    CrossJoin 

      P 

      ConstantTable((1),(2)) as Temp(tag) 

Specifically, we cross-join the fused expression P with a 

constant table with two rows (with values 1 and 2). We then 

filter the combined result distinguishing the compensating 



filters L and R with the tag that represents the lineage of each 

row, and produce the right output columns by selecting the 

corresponding input columns for each output of the UnionAll 

via a CASE statement. 

Some extensions to this basic scheme include: 

- Handling n-ary UnionAll operators by extending the 

constant table definition, filters and projections. 

- Removing the CASE statements if c1i= M(c2i) and 

replacing them with UM(c1i):=c1i. 

- If we detect a contradiction in the compensating fused 

filters (i.e., L AND R  FALSE), replacing the overall 

transformation with a simpler alternative: 

 
  Project UM(c1i):=CASE WHEN L THEN c1i ELSE M(c2i) END, ... 

    Filter L OR R 

      P 

E. Additional details 

We now explore extensions to the rules we introduced, 

which result in additional coverage on common scenarios. 

First, the rules as described so far sometimes are strict with 

respect to the patterns they require. For instance, the pattern that 

triggers the GroupByJoinToWindow rule in Section IV-A is 

P1 ⨝C GroupByK,A(P2). In general, there could be a filter 

pushed in between the join and the group-by operator (e.g., a 

single-column predicate on an aggregate column in A). Or there 

could be a Project operator in between the Join and 

GroupBy, generating an expression that is used as a residual 

condition in C. The extensions to handle these scenarios 

leverage relational algebra equivalences (e.g., pulling a filter 

above a join, or carrying over projections across our 

transformations). Note that these extensions need to be handled 

with care (e.g., we can pull a condition above an inner join, but 

not in general for outer variants). 

Second, it is important to gracefully handle n-ary operators 

like unions and joins. There are two approaches that we follow. 

The first one is to rely on the rule engine itself and the fact that 

fused subplans are still defined in terms of existing relational 

algebra operators. Therefore, handling n-ary operators can be 

done by a sequence of pairwise invocations of the rule. This 

approach works well for scenarios in which the result of the rule 

is similar enough to the original fused inputs that a subsequent 

iteration is possible. An example of this scenario is the 

JoinOnKeys rule (Section IV.B), for which we can linearize the 

input tree by flattening joins and incrementally grow the fused 

result two inputs at a time. Another approach is to extend the 

Fuse operation to work natively on more than two inputs and 

generalize the rules accordingly. This works well for the 

UnionAll rule (Section IV.D) since applying a sequence of rules 

to binary fragments of an n-ary UnionAll results in 

unnecessarily complex intermediate results. 

Third, an interesting problem is the interaction between the 

rules in this section and other rules present in the engine. For 

instance, Athena performs join reordering, and in fact, the 

specific order of inputs in a join (including topology like left-

deep vs. bushy trees) influences whether rules based on query 

fusion can be applied. Implementing the rules in this section so 

that they operate over every join order is a possibility, but it 

quickly becomes prohibitively expensive. Instead, we extend 

join-based rules (Sections IV.A and IV.B) so that they operate 

before join reordering. Specifically, after they match a root join 

operator, we (i) recursively traverse its inputs to conceptually 

obtain an n-ary join, and (ii) attempt to apply rules pairwise to 

specific join inputs (and intermediate rule results) a quadratic 

number of times. 

Finally, there is the problem of cost-based applicability of 

the rules. In general, rules operate at the logical level and 

therefore it is not possible to compare costs of the plans before 

and after rule applications. Optimization frameworks like 

Cascades [3] allow deep exploration of alternatives and 

naturally solve this problem by delaying the decision of 

choosing the best plan after all alternatives have been fully 

optimized. Athena’s optimizer does not yet support this form of 

exploration, so we rely on local heuristics based on statistics 

and plan properties to decide the applicability of each rule. 

V. EXPERIMENTAL RESULTS 

We now report an experimental evaluation of our 

techniques over the TPC-DS benchmark [16]. We briefly show 

general quantitative results on the performance of our approach, 

and then examine in detail specific queries to showcase how our 

techniques operate. For our experiments, we used a TPC-DS 

dataset at scale factor of 3TB (which is consistent with the 99-

th percentile of data sizes that Athena customers currently 

operate on), and the corresponding queries described in the 

benchmark. We partitioned the largest 7 tables (store_sales, 

store_returns, catalog_sales, catalog_returns, 

web_sales, web_returns, and inventory) by appropriate 

date columns, which results in layouts with 200 to 2000 

partitions. The remaining tables were stored without 

partitioning. All tables were encoded using Parquet with 

Snappy compression. We evaluated all queries using Athena’s 

default production configuration which serves normal customer 

queries. Athena allocates resources to queries depending on 

various signals including data volumes, query complexity, and 

historical information. In our experiments, we let Athena 

choose appropriate resources for each query, but used the same 

configuration for both the baseline (i.e., without our 

optimizations) and an instrumented version of the compiler 

(i.e., including our new optimizations). 

We observed that our approach improves the overall 

execution time of the 99-query workload by 14% compared to 

the baseline. However, not all queries trigger our optimization 

rules. When restricted to those that changed plans, we observed 

a 60% improvement in performance on average, with some 

queries improving performance over 6 times. The rest of the 

queries either did not change plans when incorporating our 

optimization rules, or their performance characteristics 

remained largely unchanged. This shows that our techniques 

are not applicable to all possible queries but instead target 

specific patterns. However, those patterns are not uncommon in 

complex analytical queries, especially in those with common 

table subexpressions. This observation is backed by analysis on 

real customer data. 



 
Figure 1: Latency improvement for selected queries. 

 

Figure 1 shows the performance improvement of our 

techniques over select queries in the benchmark. We see that 

while some queries result in moderate improvements (below 

10%), some others can be over 6 times faster when the new 

optimizations take place. 

 

 

 
Figure 2: Reduction in data read for selected queries. 

 

Figure 2, in turn, shows the fraction of input data that each 

query read from S3 using our approach, compared to the 

baseline. The figure shows that the reduction in I/O can be 

drastic, with some queries reading just 15% of the amount of 

data compared to the baseline. In general, all queries in the 

figure result in at least ~20% reduction in scanned data which, 

due to the pay-as-you-go model that Athena uses, directly 

translates to customer savings. 

In the rest of this Section, we dive deeper into these selected 

queries to showcase how our proposed approach affects the 

resulting execution plans. We use bold text to emphasize the 

query fragments that change after our optimizations. 

 

A. Introducing Window Operators 

Queries Q01, Q30 and Q65 include variants of the fragment 

we used in Section I to motivate our approach. We focus on Q1 

next since it looks, at first sight, different from the motivating 

example. Specifically, Q01 is: 

 

WITH customer_total_return AS ( 

  SELECT sr_customer_sk AS ctr_customer_sk, 

         sr_store_sk AS ctr_store_sk, 

         sum(sr_return_amt) AS ctr_total_return 

  FROM store_returns, date_dim 

  WHERE sr_returned_date_sk = d_date_sk  

    AND d_year = 2000 

  GROUP BY sr_customer_sk, sr_store_sk) 

SELECT c_customer_id 

FROM customer_total_return ctr1, store, customer 

WHERE ctr1.ctr_total_return > ( 

  SELECT avg(ctr_total_return)*1.2 

  FROM customer_total_return ctr2 

  WHERE ctr1.ctr_store_sk = ctr2.ctr_store_sk) 

AND s_store_sk = ctr1.ctr_store_sk 

AND s_state = 'TN' 

AND ctr1.ctr_customer_sk = c_customer_sk 

ORDER BY c_customer_id LIMIT 100 

 

 

In this case, the query can be decorrelated, which results in 

a pattern that triggers the GroupByJoinToWindow rule. We 

replace the join of ctr1 with the aggregated version coming 

out of the decorrelation over ctr2. Note that the two inputs that 

are needed for the rule are not next to each other, but separated 

by other joins (on store and customer). Our extensions to 

handle n-ary joins, described in Section IV.E, produce an 

alternative that removes the common expression and replaces it 

with a single WINDOW operator. The resulting rewrite, given 

below in SQL for simplicity, is then: 

 

 
WITH customer_total_return AS ( 

  SELECT sr_customer_sk AS ctr_customer_sk, 

         sr_store_sk AS ctr_store_sk, 

         sum(sr_return_amt) AS ctr_total_return 

  FROM store_returns, date_dim 

  WHERE sr_returned_date_sk = d_date_sk  

    AND d_year = 2000 

  GROUP BY sr_customer_sk, sr_store_sk) 

SELECT c_customer_id 

FROM store,  

     customer,  

     (SELECT *,  

             1.2 * AVG(ctr_total_Return) OVER 

               (PARTITION BY ctr_store_sk) AS aCtr  

      FROM customer_total_return) ctr 

WHERE ctr.ctr_total_return > ctr.aCtr 

  AND s_store_sk = ctr.ctr_store_sk 

  AND s_state = 'TN' 

  AND ctr.ctr_customer_sk = c_customer_sk 

ORDER BY c_customer_id LIMIT 100   

 

 

Queries rewritten in this way result in modest improvements 

in latency (below 10%, as the data scans are in parallel) but read 

20% to 40% less data, which directly translates in cost savings 

for customers. While evaluating these results, we identified 

some opportunities to improve the performance of Window 

operators, which would directly translate in better performance 

overall. Additionally, we noticed that these queries use less 

CPU (with savings ranging from 20% to 40%). This implies 

that we could further improve our cluster utilization by 

reducing the nodes allocated to these queries, which is an active 

direction we are pursuing. 

 



B. Merging Scalar Aggregates 

Queries Q09, Q28 and Q88 combine aggregates over the 

same common expression using slightly different predicates. 

We focus on Q09 as a representative of these queries, given by 

the fragment below: 

 
SELECT CASE  

  WHEN (SELECT COUNT(*)  

     FROM store_sales  

     WHERE ss_quantity BETWEEN 1 AND 20) > 48409437 

  THEN (SELECT AVG(ss_ext_discount_amt)  

     FROM store_sales  

     WHERE ss_quantity BETWEEN 1 AND 20)  

  ELSE (SELECT AVG(ss_net_profit) 

     FROM store_sales 

     WHERE ss_quantity BETWEEN 1 AND 20) END 

  AS bucket1, 

  <4 more variations of the CASE expression above> 

FROM reason 

WHERE r_reason_sk = 1 

 

 

In total, there are 15 scans of the fact table store_sales, 

each one returning various aggregates over different subsets of 

data. The engine first performs subquery removal and 

transforms the various expressions in the CASE statements into 

relational subtrees connected via cross products, and then the 

JoinOnKeys rule, specialized to handle scalar aggregates and 

cross joins, is triggered. The resulting plan for Q09, described 

below using SQL for clarity, is given by: 

 
SELECT CASE WHEN v1 > 48409437 THEN t1 ELSE e1 END, 

       <4 more variations> 

FROM ( 

 SELECT COUNT(*) FILTER(WHERE b1) AS v1, 

        AVG(ss_quantity) FILTER(WHERE b1) AS t1, 

        AVG(ss_net_profit) FILTER(WHERE b1) AS e1, 

        <4 more variations> 

 FROM ( 

    SELECT *, ss_quantity between 1 and 20 as b1, 

              <4 more variations> 

    FROM store_sales 

    WHERE ss_quantity between 1 and 20  

       OR <4 more variations>)), 

 Reason 

 Where r_reason_sk = 1) 

 

 

In general, this pattern results in the largest improvements 

both in latency (from 3x to 6x improvements) and bytes read 

from S3 (from 60% to 85% reduction in scanned bytes and, 

consequently, cost). While the transformations are similar in 

these 3 queries, there are some minor differences. Q88 has a 

complex common expression involving a 4-way join, which 

results in even more savings in latency. Q28 uses distinct 

aggregates, which leverages our extensions to deal with 

MarkDistinct operators during query fusion. 

 

 

C. Refactoring UnionAll Branches 

A simplified version of query Q23, which combines two 

similar insights over different fact tables is as follows: 

 

WITH freq_items AS (...), best_customer AS (...) 

SELECT SUM(sales) 

FROM (SELECT cs_quantity*cs_list_price AS sales 

      FROM catalog_sales, date_dim 

      WHERE d_year = 1999 

        AND d_moy = 1 

        AND cs_sold_date_sk = d_date_sk 

        AND cs_item_sk IN 

              (SELECT item_sk FROM freq_items) 

        AND cs_bill_customer_sk IN  

              (SELECT cust_sk FROM best_customer) 

      UNION ALL 

      SELECT ws_quantity*ws_list_price AS sales 

      FROM web_sales, date_dim 

      WHERE d_year = 1999 

        AND d_moy = 1 

        AND ws_sold_date_sk = d_date_sk 

        AND ws_item_sk IN  

              (SELECT item_sk FROM freq_items) 

        AND ws_bill_customer_sk IN 

              (SELECT cust_sk FROM best_customer)) 

 

This query uses a UnionAll operation to combine two 

fragments that have almost the same structure except for the 

fact tables being used (catalog_sales vs. web_sales): 

 

web_sales ⨝ date_dim ⋉ freq_items ⋉ best_customer, and  
catalog_sales ⨝ date_dim ⋉ freq_items ⋉ best_customer 

 

Rule UnionAllOnJoin triggers repeatedly in this case, first 

fusing best_customer, then freq_items, and finally 

date_dim. The resulting plan (using SQL) is as follows: 

 
WITH freq_items as (...), best_customer as (...) 

SELECT SUM(sales) FROM ( 

  SELECT cs_quantity*cs_list_price AS sales 

  FROM date_dim, ( 

    SELECT cs_sold_date_sk, cs_quantity, cs_item_sk, 

           cs_bill_customer_sk, cs_list_price  

    FROM catalog_sales 

 UNION ALL 

 SELECT ws_sold_date_sk, ws_quantity, ws_item_sk, 

        ws_bill_customer_sk, ws_list_price  

FROM web_sales) 

WHERE d_year = 1999 

  AND d_moy = 1 

  AND cs_sold_date_sk = d_date_sk 

  AND cs_item_sk in (SELECT item_sk FROM freq_items) 

  AND cs_bill_customer_sk IN  

       (SELECT c_customer_sk FROM best_customer)) 

 

In this case, query latency is almost 2x better, and the bytes 

scanned (and corresponding costs) are dropped almost by half. 

The reason is that both freq_items and best_customer are 

rather expensive common expressions, which make a big 

difference when one instance is removed. Another benefit of 

this rewrite concerns the amount of memory that the query uses. 

At larger scale factors, we noticed that the engine runs out of 

working memory and starts spilling to disk intermediate state 

encoded in join and aggregate hash tables. One reason is that 

both instances of the common subexpressions are evaluated 

concurrently. When removing the common expressions, the 

amount of memory needed to hold intermediate state is reduced 

by half as well, and spilling is not needed. We have seen an 

additional 50% improvement in latency for those scenarios. 



D. Unifying Relational Aggregates 

Query Q95 exhibits a curious pattern. A simpler version is: 

 
WITH ws_wh as ( 

  SELECT ws1.ws_order_number as ws_wh_number 

  FROM web_sales ws1, web_sales ws2 

  WHERE ws1.ws_order_number = ws2.ws_order_number 

   AND ws1.ws_warehouse_sk <> ws2.ws_warehouse_sk) 

SELECT <scalar aggs> 

FROM web_sales,  

     date_dim,  

     customer_address, 

     web_site 

WHERE <filter and join predicates> 

  AND ws_order_number IN  

          (SELECT ws_wh_number FROM ws_wh) 

  AND ws_order_number IN  

       (SELECT wr_order_number FROM ws_wh 

        JOIN web_returns  

        ON wr_order_number = ws_wh_number) 

 

We can see that the two IN clauses are very related to each 

other. Specifically, the first one is redundant. The reason is that 

every ws_order_number that appears in the second subquery 

must also appear on the first one (since the second one further 

restricts the values it returns due to joining with web_returns 

on the same column). Interestingly enough, both subqueries 

refer to an expensive common expression ws_wh that self joins 

a fact table. Our approach is able to simplify this query relying 

on the interplay between our new rules and existing ones in the 

engine. Specifically, we first transform the semi-joins into 

equivalent joins over a distinct on the right side. Then, we apply 

a rule that pushes a distinct operation below a join whenever the 

distinct and join columns agree. In this way, we obtain an 

alternative that can be expressed in SQL (for simplicity) as: 

 
WITH ws_wh as (...) 

SELECT <scalar aggs> FROM  

 web_sales ws1,  

 date_dim,  

 customer_address, 

 web_site, 

 (SELECT DISTINCT ws_wh_number FROM ws_wh) R0, 

 (SELECT DISTINCT wr_order_number FROM web_returns) R1, 

 (SELECT DISTINCT ws_wh_number FROM ws_wh) R2 

WHERE <filter and join predicates> 

  AND ws1.ws_order_number = R0.ws_order_number 

  AND ws1.ws_order_number = R1.wr_order_number 

  AND ws1.ws_order_number = R2.ws_order_number 

 

Finally, the JoinOnKeys rule triggers and fuses R0 and R2. 

Since these subqueries (R0 and R2) do not return any aggregate 

and the grouping columns are the same, the fusion essentially 

removes one of the duplicate expressions. The resulting query 

is 30% faster and reads 40% less data from S3.  

 

VI. CONCLUSION 

In this paper we introduced new optimizations implemented 

in Amazon Athena’s query engine that improve performance of 

a class of queries containing common subexpressions. Our 

optimizations are built on top of the concept of query fusion, 

which we extended and streamlined for the purposes of this 

work. We showed several real-world examples that can benefit 

from this approach, and quantified the benefit of our query 

rewrites on the TPC-DS benchmark. We continue identifying 

additional rewrite rules that happen frequently in customer 

workloads, and we plan to use in the future the fusion 

infrastructure of Section III as a building block of our work on 

generic spooling of subqueries that go beyond the techniques 

introduced in this paper. 
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